• Title/Summary/Keyword: temperature limit

Search Result 1,358, Processing Time 0.028 seconds

Performance and Emission Characteristics of Compression Ignition Gasoline Engine (압축점화 가솔린기관의 성능 및 배기특성)

  • Kim, Hong-Sung;Kim, Mun-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.1007-1014
    • /
    • 2003
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to 18$0^{\circ}C$ in the inlet air temperature. The compression ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. For example. the allowable lean limit of air-fuel ratio is extended until 63 at engine speed of 1000 rpm and inlet air temperature of 17$0^{\circ}C$. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

Generation and Application of Atmospheric Pressure Glow Plasma in Micro Channel Reactor (마이크로 채널 반응기 내 상압 글로우 플라즈마 생성 및 응용)

  • Lee, Dae-Hoon;Park, Hyoun-Hyang;Lee, Jae-Ok;Lee, Seung-S.;Song, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1869-1873
    • /
    • 2008
  • In this work, to make it possible to generate glow discharge in atmospheric pressure condition with relatively high and wide electric field, micro channel reactor is proposed. Si DRIE and Cr deposition by Ebeam evaporation is used to make channel and bottom electrode layer. Upper electrode is made from ITO glass to visualize discharge within micro channel. Fabricated reactor is verified by generating uniform glow plasma with N2 / He gases each as working fluid. The range of gas electric field to generate glow plasma is from about 200 V/cm and upper limit is not observed in tested condition of up to 150 kV/cm. This data shows that micro channel plasma reactor is more versatile. Indirect estimation of electron temperature in this reactor can be inferred that the electron temperature within glow discharge in micro reactor lies $0{\sim}2eV$. This research demonstrates that the reactor is appropriate in application that needs to maintain low temperature condition during chemical process.

  • PDF

Strain Rate Dependency of Deformation Behavior in $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ Bulk Metallic Glass ($Zr_{55}Cu_{30}Al_{10}Ni_{5}$ 벌크 유리상 금속 변형거동의 변형률속도 의존성)

  • Shin, Hyung-Seop;Jeong, Young-Jin;Ko, Dong-Kyun;Oh, Sang-Yeob
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1145-1150
    • /
    • 2003
  • Zr-based bulk metallic glasses have a significant mechanical properties such as high strength and elastic strain limit, and a good processing ability due to the deformation behavior such as superplasticity under supercooled liquid region. Recently, many researches on the determination of optimum working condition in various bulk metallic glasses have been carried out. In this study, the deformation behavior and forming conditions of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass were investigated under three different strain rates and at various temperatures between 627K and 727K. The glass transition temperature, crystallization temperature and supercooled liquid region of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass are 680K, 762K and 82K, respectively.

  • PDF

Numerical Study on the Ventilation Effect in the Boiler Building (보일러빌딩 내부 환기현상에 관한 수치적 연구)

  • Kim, Chul Hwan;Yoo, Geun Jong;Choi, Hoon Ki
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.239-249
    • /
    • 2005
  • Ventilation effect is analyzed for boiler building with multiple heat sources. Air flow inside the boiler building is characterized as turbulent mixed convection. Analysis methodology is set up with two different $k-{\varepsilon}$ type models (standard $k-{\varepsilon}$, RNG $k-{\varepsilon}$). Two different cases with high and low outside temperature are analyzed. In case of high outside temperature condition, mixed convection is well realized inside the boiler building. With different upper louver opening rate, air flow is also well established and proper opening rate is found to meet design limit in case of low outside temperature condition. Difference of analysis results for two different turbulence models are not significant. Therefore, analysis methodology with simple $k-{\varepsilon}$ turbulence model is found to be reliable for the boiler building ventilation analysis. However, more simplified geometrical model is desired to expand its application.

Heat Transfer Analysis and Cooling Design for Crude Oil Pump System (원유펌프시스템의 열전달해석 및 냉각설계)

  • Kim, Wan-Gi;Lee, Joon-Yeob;Kwon, Jung-Lock;Kim, Hea-Choen
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2017-2022
    • /
    • 2008
  • The crude oil pump system is the equipment for transporting crude oil and it consists of 3 major components, a motor and an impeller which discharge underground crude oil, a pipestack that transmits the cooling oil and power, and a cooling oil unit & junction box that provides cooling oil and electric power. When considering the system characteristics that it has to be installed at a depth of deeper than 100 m, a design technology for the efficient control of the heat occurring at a conductor and motor is necessary and it is the essential factor for ensuring system durability. In this paper, therefore, cooling oil flow has been calculated to satisfy the limit value of the system temperature by analyzing heat flow considering the related losses such as loss of conductor, contact resistor loss at the conductor connection, and operation loss of motor. And the operation temperature has been set up based on the temperature of crude oil and the heat of motor and conductor. Also, a design for cooling of crude oil pump system has been proposed by calculating the operation pressure loss and selecting the capacity of a cooling oil pump and a heat exchanger.

  • PDF

High Coercive Nd-Fe-B Sintered Magnets for High Temperature Application

  • Kim, D.H.;Kim, A.S.;Lim, T.H.;Jang, T.S.
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.27-30
    • /
    • 2009
  • Various sintered magnets containing $28{\sim}31\;wt%$ Nd and $0{\sim}7\;wt%$ Dy were evaluated for coercivity and irreversible flux loss as a preliminary study to develop highly-coercive, high-temperature magnets that can be applied for driving motors in a hybrid vehicle. The sintered magnets were prepared in sequence of strip casting, HD treatment, jet milling, magnetic field pressing, sintering and post-annealing. Increasing Dy content and adjusting post-annealing temperature monotonically increased coercivity of magnets from about 14 kOe to 30 kOe. A magnet containing 28 wt% Nd and 7 wt% Dy exhibits a $(BH)_{max}$+$_i{H_c}$ value of almost 64. This is very close to what the automobile industry considers as the minimum value (65) for a hybrid vehicle system. Moreover, irreversible flux loss of the magnet was about 3% at $200^{\circ}C$, which is well less than the allowable limit (5%) to a driving motor in hybrid vehicles.

A Study on Corrosion Properties of welded Alloy 625 for Ship Structure by Shielding Gases Composite Ratio (선체 구조용 Alloy 625의 용접시 보호가스 조성비에 따른 부식특성에 관한 연구)

  • An Jae-Pil;Park Keyung-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.399-406
    • /
    • 2005
  • Alloy 625 is used widely in industrial applications such as aeronautical aerospace, chemical, petrochemical and marine applications. Because of a good combination of yield strength. tensile strength, creep strength, excellent fabricability, weldability and good resistance to high temperature corrosion on prolonged exposure to aggressive environments. High qualify weldments for this material are readily produced by commonly used processes. But all of processes are not applicable to this material by reason of unavailability of matching, position or suitable welding filler metals and fluxes may limit the choice of welding processes. Recently, the flux cored wire is developed and applied for the better productivity in several welding position including the vortical position. In this study. the weldability and weldment characteristics of Alloy 625 are evaluated in FCAW weld associated with the several shielding gases($80\%Ar+20\%\;CO_2,\;50\%Ar+50\%\;CO_2.\;100\%\;CO_2$) in viewpoint of welding productivity. The results of the experimental study on corrosive characteristics of Alloy 625 are as follows; There is no remarkable difference among shielding gases. however they has a striking difference among corrosive solutions by results of distinguished density and time of corrosive solution. Generally, the shielding gases($80\%Ar+20\%\;CO_2$) was superior to the other gases on high temperature tensile and a low temperature impact. but all of the shield gases were making satisfactory results on corrosion test.

Electromagnetic design study of a 7 T 320 mm high-temperature superconducting MRI magnet with multi-width technique incorporated

  • Jang, Won Seok;Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bang, Jeseok;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.30-34
    • /
    • 2021
  • Superconducting magnets have paved the way for opening new horizons in designing an electromagnet of a high field magnetic resonance imaging (MRI) device. In the first phase of the superconducting MRI magnet era, low-temperature superconductor (LTS) has played a key role in constructing the main magnet of an MRI device. The highest magnetic resonance (MR) field of 11.7 T was indeed reached using LTS, which is generated by the well-known Iseult project. However, as the limit of current carrying capacity and mechanical robustness under a high field environment is revealed, it is widely believed that commercial LTS wires would be challenging to manufacture a high field (>10 T) MRI magnet. As a result, high-temperature superconductor together with the conducting cooling approach has been spotlighted as a promising alternative to the conventional LTS. In 2020, the Korean government launched a national project to develop an HTS magnet for a high field MRI magnet as an extent of this interest. We have performed a design study of a 7 T 320 mm winding bore HTS MRI magnet, which may be the ultimate goal of this project. Thus, in this paper, design study results are provided. Electromagnetic design and analysis were performed considering the requirements of central magnetic field and spatial field uniformity.

A Study on Buckling Strengths for Steel Compression Members at High Temperatures (고온 강구조 압축재의 좌굴 강도에 관한 연구)

  • Choi, Hyun-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.73-81
    • /
    • 2019
  • The high-temperature properties of mild steels were studied by comparing the test results of Kwon and the yield strength, tangent modulus predicted by the design provisions of ASCE and Eurocode(EC3). The column strengths for steel members at high temperatures were determined by the elastic and inelastic buckling strengths according to elevated temperatures. The material properties at high temperatures should be used in the strength evaluations of high temperature members. The buckling strengths obtained from the AISC, EC3 and approximate formula proposed by Takagi et al. were compared with ones calculated by the material nonlinear analysis using the EC3 material model. The newly simplified formulas for yield stress, tangent modulus, proportional limit and buckling strength which were proposed through a comparative study of the material properties and buckling strengths. The buckling strengths of proposed formulas were approximately equivalent to ones obtained from the formulas of Takagi et al. within 4%. They were corresponded to the lower bound values among the buckling strengths calculated by the design formulas and inelastic buckling analysis.

Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging (전력반도체 접합용 천이액상확산접합 기술)

  • Lee, Jeong-Hyun;Jung, Do-hyun;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • This paper shows the principles and characteristics of the transient liquid phase (TLP) bonding technology for power modules packaging. The power module is semiconductor parts that change and manage power entering electronic devices, and demand is increasing due to the advent of the fourth industrial revolution. Higher operation temperatures and increasing current density are important for the performance of power modules. Conventional power modules using Si chip have reached the limit of theoretical performance development. In addition, their efficiency is reduced at high temperature because of the low properties of Si. Therefore, Si is changed to silicon carbide (SiC) and gallium nitride (GaN). Various methods of bonding have been studied, like Ag sintering and Sn-Au solder, to keep up with the development of chips, one of which is TLP bonding. TLP bonding has the advantages in price and junction temperature over other technologies. In this paper, TLP bonding using various materials and methods is introduced. In addition, new TLP technologies that are combined with other technologies such as metal powder mixing and ultrasonic technology are also reviewed.