• Title/Summary/Keyword: temperature limit

Search Result 1,358, Processing Time 0.024 seconds

A Phytoclimatic Review of Warm-temperate Vegetation Zone of Korea (한국 난온대 식생분포대의 식물기후학적 재검토)

  • Eom, Byeongcheol;Kim, Jong-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.2
    • /
    • pp.195-207
    • /
    • 2020
  • In Korea, specific thermal elements such as annual mean temperature (AMT) 13℃, 14℃, and Kira's coldness index (CI) -10℃, have been suggested about the northernmost distribution of the warm-temperate evergreen broad-leaved forest zone. We reviewed the relationship between three thermal elements and the actual distribution of evergreen broad-leaved woody plants or its communities. Thiessen and Kriging method using point-data calibrated by seasonal lapse rate according to altitude were utilized for the spatial distribution pattern analysis. Several phytoclimatic maps were also produced in order to compare different thermal values. We identified that the AMT 13℃ was the best thermal element to demarcate the northern limit of the warm-temperate forest zone. Its area was estimated ca. 20,334 ㎢ and larger than those of other thermal elements. We concluded that an indirectly fabricated index i.e. CI -10℃ is useless and it was enough for a direct value of AMT 13℃ to represent the northern-limit distribution of warm-temperate forest zone, at least in Korea. Further researches on the reciprocity between floristic regions and phytoclimate zones are raised.

Short-time creep, fatigue and mechanical properties of 42CrMo4 - Low alloy structural steel

  • Brnic, Josip;Canadija, Marko;Turkalj, Goran;Krscanski, Sanjin;Lanc, Domagoj;Brcic, Marino;Gao, Zeng
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.875-888
    • /
    • 2016
  • The proper selection of materials for the intended use of the structural member is of particular interest. The paper deals with determining both the mechanical properties at different temperatures and the behavior in tensile creep as well as fatigue testing of tensile stressed specimens made of low alloy 42CrMo4 steel delivered as annealed and cold drawn. This steel is usually used in engineering practice in design of statically and dynamically stressed components. Displayed engineering stress - strain diagrams indicate the mechanical properties, creep curves indicate the material creep behavior while experimental investigations of fatigue may ensure the fatigue limit determination for considered stress ratio. Also, hardness testing provides an insight into material resistance to plastic deformation. Experimentally obtained results regarding material properties were: tensile strength (735 MPa / $20^{\circ}C$, 105 MPa / $680^{\circ}C$), yield strength (593 MPa / $20^{\circ}C$, 76 MPa / $680^{\circ}C$). Fatigue limit in the amount of 532.26 MPa, as maximum stress at stress ratio R = 0.25 at ambient temperature was calculated on the basis of experimentally obtained results. Regarding the creep resistance it is visible that this steel can be treated as creep resistant at high temperatures (including $580^{\circ}C$) when applied stress is of low level (till 0.2 of yield stress).

Studies on the Residual Bending Strength of Burned Wood treated with Fire-retardant Chemicals (내화처리연소목(耐火處理燃燒木)의 잔류(殘留) 휨강도에 관(關)한 연구(硏究))

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.10-19
    • /
    • 1984
  • The $3{\times}3{\times}30$ ($cm^3$) sized lumbers of Populus alba-grandulosa L. were treated with four fire-retardant solutions of ammonium sulfate, monoammonium phosphate, diammonium phosphate and aluminium chloride for 1, 15, 30, and 60 minutes and 1, 3, and 7 days. Thereafter they were air-dried and burned at high temperature about $1,800^{\circ}C$ and for short time of five minutes. This study estimated the relationship between absorbed chemical amounts and rate of weight loss or residual bending strength of these burned lumbers. The results were as follows: 1) In absorption amount of fire-retardant chemicals, diammonium phosphate showed the largest, aluminium chloride the smallest, but monoammonium phosphate and ammonium sulfate showed similar level. 2) The absorption amount of chemicals was decreased with the increase of specific gravity in the same species except aluminium chloride. 3) The rate of weight loss was decreased as the absorption amount of chemicals increased, especially monoammonium phosphate was most effective. 4) The MOR value of the residual bending strength was increased as the absorption amount of chemicals increased and especially monoammonium phosphate showed the most efficient effect. 5) Aluminium chloride showed more striking increase of MOR value of residual bending strength with the increase of absorption amount than any other chemical, therefore its MOR value was similar to the maximum MOR value of the most effective monoammonium phosphate. 6) The correlation between weight loss and MOR value of the residual bending strength was negative and aluminium chloride showed the most striking negative relation, but the others showed similar trends. 7) The correlation between work to proportional limit and absorption amount of chemicals was positive and the degree of increase in work to proportional limit was most in aluminium chloride, and the next, in monoammonium phosphate and diammonium phosphate in turn. 8) The correlation between work to maximum load and absorption amount of chemicals showed positive and diammonium phosphate revealed the best result and aluminium chloride showed better results than other two chemicals.

  • PDF

Explosion Characteristics of Bituminous Coal Dusts in Cement Manufacturing Process (시멘트 제조공정에서 유연탄 분진의 폭발특성)

  • Kim, Won-Hwai;Lee, Seung-Chul;Seung, Sam-Sun;Kim, Jin-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.257-263
    • /
    • 2008
  • We have examined explosion characteristics of bituminous coal dusts in cement manufacturing process. In order to find the thermal properties, we investigated weight loss and ignition temperature of coal materials using TGA and DSC. Also specific surface area of dust was investigated. Dust explosion experiments with Hartman's dust explosion apparatus have been conducted by varying concentration and size of coal dust for explosion probability and lower limit explosion concentration. According to the results for thermal properties, there is a little change by dust size. However, the specific surface area of dust is increased by decreasing dust size. The explosion test results show that small size and increasing concentration of dusts make dust explosion easier. And we find that the lower limit explosion concentration of bituminous coal is $0.3mg/cm^3$ and the probability is 100% on $0.9mg/cm^3$ in 170/200 mesh used in cement manufacturing process.

The effects of the surface defects on the hydroformability of extruded aluminum tubes (알루미늄 압출 관재의 표면 결함이 하이드로포밍 성형에 미치는 영향도에 관한 연구)

  • Kim D. H.;Kim B. J.;Park K. S.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.247-250
    • /
    • 2005
  • The need for improved fuel efficiency, weight reduction has motivated the automotive industry to focus on aluminum alloys as a replacement for steel-based alloy. To cope with the needs for high structural rigidity with low weight, it is forecasted that substantial amount of cast components will be replaced by tubular parts which are mainly manufactured by the extruded aluminum tubes. The extrusion process is utilized to produce tubes and hollow sections. Because there is no weld seam, the circumferential mechanical properties may be uniform and advantageous for hydroforming. However the possibility of the occurrence of a surface defect is very high, especially due to the temperature increase from forming at high pressure when it comes out of the bearing and the roughness of the bearing, which cause the surface defects such as the dies line and pick-up. And when forming a extruded aluminum tube, the free surface of the tube becomes rough with increasing plastic strain. This is well known as orange peel phenomena and has a great effect not only on the surface quality of a product but also on the forming limit. In an attempt to increase the forming limit of the tubular specimen, in the present paper, surface asperities generated during the hydroforming process are polished to eliminate the weak positions of the tube which lead to a localized necking. It is shown that the forming limit of the tube can be considerably improved by simple method of polishing the surface roughness during hydroforming. And also the extent of the crack propagation caused by dies lines generated during the extrusion process is evaluated according to the deformed shape of the tube.

  • PDF

Study on analysis method of herbicide quizalofop-ethyl (제초제 quizalofop-ethyl 분석법에 관한 연구)

  • Kim, Hee-Kwon;Kim, Byeong-Ho;Shim, Jae-Han;Shu, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.22-25
    • /
    • 1998
  • These studies were conducted to develope analysis method of herbicide quizalofop-ethyl by Gas Liquid Chromatography(GLC) and Enzyme-Linked Immunosoment Assay(ELISA) in soil and plant. Quizalofop produced by hydrolysis of quizalofop-ethyl was conjugated with bovine serum albumin(BSA). Quizalofop antibody was developed in rabbits by using BSA conjugation. Antibody titer, incubation temperature, and incubation time was 32,000, $37^{\circ}C$ and 4hours respectively. Minimum detection limit of quizalofop-ethyl by ELISA was 5ppb. Quizalofop-ethyl recovery from soil by ELISA was more than 95percent. Minimum detection limit of quizalofop-ethyl by GLC was 5ppb. Quizalofop-ethyl recovery from soil by GLC was from 89 percent to 100 percent. Minimun detection limit of quizalofop-ethyl by HPLC was 100ppb. Quizalofop-ethyl recovery from soil by HPLC was 89.6 percent.

  • PDF

Design Study of A Spent Fuel Shipping Cask for Korea Nuclear Unit-1 (고리 1호기의 기사용 핵연료 집합체 수송용기 설계에 관한 연구)

  • Moo Han Kim;Chang Sun Kang
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.196-203
    • /
    • 1982
  • To transport the spent fuel assemblies of Korea Nuclear Unit 1, which is a Westinghouse type two loop pressurized water reactor, it has been found that steel is the most appropriate material for the design of a shipping cask in comparison with lead and depleted uranium. The proposed shipping cask will transport nine fuel assemblies at the same time and is well within the weight limit of transportation by unrestricted rail car. The cask requires 33cm thick steel shield and 27cm thick water region to satisfy the 3 feet apart dose rate limit set forth in 10 CFR 71, and 1.27cm thick steel boron fuel basket to hold the fuel elements inside the cask and control the effective multiplication factor. As a safety analysis, the fuel cladding and centerline temperatures were calculated under the accident condition of complete loss of water coolant, and it was found that the temperature was much lower than the limit of the melting point. k$_{eff}$ was calculated with fresh fuel assemblies, which was found to be well lower than 0.95. For shielding computation, the multipurpose Monte Carlo code MORSE-CG and one dimensional discrete ordinates transport code ANISN were used, and the Monte Carlo codes KENO and MORSE-CG were used for criticality calculation. The radiation source terms were calculated using ORIGEN-79.9.

  • PDF

Investigating the Subsea Sandwich Pipeline Integrity under Complex Loadings (선형 매칭 기법을 활용한 해저 샌드위치 파이프의 복합하중 영향도 분석)

  • Geo-Rak Park;Kyu Song;Youngjae Choi;Nak-Kyun Cho;Chung-Soo Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • Subsea pipelines are widely used to transport hydrocarbons from ultra-deep seawater to facilities on the coast. A sandwich pipe is a pipe-in-pipe system in which the annulus between the two concentric steel pipes is filled with polymer cores and fillers for insulation and structural reinforcement. Sandwich pipeline is always exposed to complex loading such as bending moment, bulking, internal and external pressures caused by installation, operation and environmental factors. This research provides insights into the structural integrity of sandwich pipeline exposed to complex loading conditions using a linear matching method (LMM). The finite element model of the sandwich pipeline has been generated from previous research, and the model validation is performed by comparing the results of the linear analysis between the two models. The temperature dependent material properties are used to simulate the behavior of real pipeline, and the elastic-perfectly plastic (EPP) model has been taken into account for the material non-linearity. Numerical results provide comprehensive insights into the structural response of the sandwich pipeline under monotonic and cyclic loading and provide notable points about the evaluation of the plastic collapse limit and the elastic shakedown limit of the sandwich pipeline.

The study of strength behaviour of zeolite in cemented paste backfill

  • Eker, Hasan;Bascetin, Atac
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.421-434
    • /
    • 2022
  • In the present study, reference samples were prepared using ore preparation facility tailings taken from the copper mine (Kure, Kastamonu), Portland cement (PC) in certain proportions (3 wt%, 5 wt%, 7 wt%, 9wt% and 11 wt%), and water. Then natural zeolite taken from the Bigadic Region was mixed in certain proportions (10 wt%, 20 wt%, 30 wt% and 40 wt%) for each cement ratio, instead of the PC, to prepare zeolite-substituted CPB samples. Thus, the effect of using Zeolite instead of PC on CPB's strength was investigated. The obtained CPB samples were kept in the curing cabinet at a temperature of 25℃ and at least 80% humidity, and they were subjected to the Uniaxial Compressive Strength (UCS) test at the end of the curing periods of 3, 7, 14, 28, 56, and 90 days. Except for the 3 wt% cement ratio, zeolite substitution was observed to increase the compressive strength in all mixtures. Also, the liquefaction risk limit for paste backfill was achieved for all mixtures, and the desired strength limit value (0.7 MPa) was achieved for all mixtures with 28 days of curing time and 7 wt%, 9 wt%, 11 wt% cement ratios and 5% cement - 10% zeolite substituted mixture. Moreover, the limit value (4 MPa) required for use as roof support was obtained only for mixtures with 11% cement - 10% and 20% zeolite content. Generally, zeolite substitution seems to be more effective in early strength (up to 28th day). It has been determined that the long-term strength losses of zeolite-substituted paste backfill mixtures were caused by the reaction of sulfate and hydration products to form secondary gypsum, ettringite, and iron sulfate.

A HDD Latch Design Using Electro-magnetic Force of VCM Actuators (VCM 액추에이터의 전자기력을 이용한 HDD 래치 설계)

  • Kim, Kyung-Ho;Oh, Dong-Ho;Shin, Bu-Hyun;Lee, Seung-Yop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.788-794
    • /
    • 2009
  • Various types of latch designs for hard disk drives using load/unload mechanism have been introduced to protect undesired release motions of a voice coil motor(VCM) actuator from sudden disturbances. Recently, various inertia-type latches have been widely used because locking performance is better than that of other types of latch. However there has been a limit in the inertia type in order to guarantee perfect latch and unlatch operations because of changes in latch/unlatch conditions due to mechanical tolerance and temperature-dependent friction. In this paper, a reliable and robust magnetic latch mechanism is proposed through only simple modifications of coil and yoke shapes in order to overcome the mechanical limit of current inertia-type latches. This new magnetic latch does not have only a simple structure but it also ensures reliable operations and anti-shock performance. The operating mechanism of the proposed latch is theoretically analyzed and optimally designed using an electromagnetic simulation.