• Title/Summary/Keyword: temperature inversion

Search Result 302, Processing Time 0.039 seconds

Numerical Investigation of Freezing and Thawing Process in Buried Chilled Gas Pipeline (매설 냉각가스관의 동결-융해에 대한 수치해석 연구)

  • Shin, Hosung;Park, Heungrock
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.17-26
    • /
    • 2016
  • Characteristic behaviors of geo-structure during freezing and thawing process have to be understood based on fundamental knowledge on phase change in porous soil and interaction between soil and structure. Inversion analysis using published one-dimensional soil freezing tests was conducted to suggest a mechanical model to consider an effect of the ice saturation on Young's modulus. Silty soil was more sensitive to temperature than weathered granite soil and sand, and weathered granite soil was more affected by initial water saturation in stiffness decrease than silty soil. Numerical simulations on chilled gas pipeline showed that shielding effect from surrounding frozen zone around the pipe decreases impact from external load onto the pipe. And a pipe installed in sand backfill showed more heaving due to relatively low stiffness of sand during freezing than that of surrounding in-situ weather granite soil. However, it had more stable stress condition due to effective stress redistribution from external load.

Synthesis of wagnerite and its analogues for ceramic pigments (I) (도자기 유약용 Wagnerite의 합성(I))

  • Chung, Yong-Sun;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.640-647
    • /
    • 1997
  • Wagnerite ($Mg_2PO_4F)$ was successfully synthesized in a sealed platinum tube and the complete substitutions of $Co^{++}, Ni^{++}, Cu^{++} \;and\;Zn^{++}$for Mg were made in the wagnerite structure. Wagnerite did not decompose until it reached its melting temperature. It was observed that wagnerite underwent only one inversion at $1255^{\circ}C$, prior to melting at $1340^{\circ}C$. The lattice parameters of wagnerites were linearly increased by the substitutions of $Co^{++}$ and $Zn^{++}$ and decreased by the substitutions of $Ni^{++}$ and $Cu^{++}$. The substitutions of wagnerite with $Co^{++}, Ni^{++}$ and $Cu^{++}$ resulted in purple, orange and green colors, respectively, The colors of pigments became more intense and suitable for coloring of glazes and plastics as the amount of metal ions increased.

  • PDF

Synthesis and Photoluminescence Properties of Red Phosphors Gd1-xAl3(BO3)4:Eux3+ (적색 형광체 Gd1-xAl3(BO3)4:Eux3+의 합성과 발광 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.145-149
    • /
    • 2012
  • Red phosphors of $Gd_{1-x}Al_3(BO_3)_4:{Eu_x}^{3+}$ were synthesized by using the solid-state reaction method. The phase structure and morphology of the phosphors were measured using X-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM), respectively. The optical properties of $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors with concentrations of $Eu^{3+}$ ions of 0, 0.05, 0.10, 0.15, and 0.20 mol were investigated at room temperature. The crystals were hexagonal with a rhombohedral lattice. The excitation spectra of all the phosphors, irrespective of the $Eu^{3+}$ concentrations, were composed of a broad band centered at 265 nm and a narrow band having peak at 274 nm. As for the emission spectra, the peak wavelength was 613 nm under a 274 nm ultraviolet excitation. The intensity ratio of the red emission transition ($^5D_0{\rightarrow}^7F_2$) to orange ($^5D_0{\rightarrow}^7F_1$) shows that the $Eu^{3+}$ ions occupy sites of no inversion symmetry in the host. In conclusion, the optimum doping concentration of $Eu^{3+}$ ions for preparing $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors was found to be 0.15 mol.

Quantitative analysis of the errors associated with orbit uncertainty for FORMOSAT-3

  • Wu Bor-Han;Fu Ching-Lung;Liou Yuei-An;Chen Way-Jin;Pan Hsu-Pin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.87-90
    • /
    • 2005
  • The FORMOSAT-3/COSMIC mission is a micro satellite mission to deploy a constellation of six micro satellites at low Earth orbits. The final mission orbit is of an altitude of 750-800 lan. It is a collaborative Taiwan-USA science experiment. Each satellite consists of three science payloads in which the GPS occultation experiment (GOX) payload will collect the GPS signals for the studies of meteorology, climate, space weather, and geodesy. The GOX onboard FORMOSAT -3 is designed as a GPS receiver with 4 antennas. The fore and aft limb antennas are installed on the front and back sides, respectively, and as well as the two precise orbit determination (POD) antennas. The precise orbit information is needed for both the occultation inversion and geodetic research. However, the instrument associated errors, such as the antenna phase center offset and even the different cable delay due to the geometric configuration of fore- and aft-positions of the POD antennas produce error on the orbit. Thus, the focus of this study is to investigate the impact of POD antenna parameter on the determination of precise satellite orbit. Furthermore, the effect of the accuracy of the determined satellite orbit on the retrieved atmospheric and ionospheric parameters is also examined. The CHAMP data, the FORMOSAT-3 satellite and orbit parameters, the Bernese 5.0 software, and the occultation data processing system are used in this work. The results show that 8 cm error on the POD antenna phase center can result in ~8 cm bias on the determined orbit and subsequently cause 0.2 K deviation on the retrieved atmospheric temperature at altitudes above 10 lan.

  • PDF

Study on Characteristics of Fog in the Coastal Area of Mokpo (목포연안지역의 안개특성에 관한 연구)

  • Kim Do-Yong;Lee Sang-Deug;Kim Ji-Young;Woo Jong-Taek;Oh Jai-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.623-634
    • /
    • 2006
  • In this study, characteristics of fog at Mokpo as the west coastal area of Jeonnam were investigated, using statistical analysis of observed fog and meteorological data. Higher frequency of the fog occurrence at Mokpo was showed in spring(32%) and summer(34%) due to the seasonal high atmospheric pressure. Regional characteristics as radiation cooling, advection of fog and water vapor from surrounding sea and Yeongsan lake, and frontal fog had major effect on the coastal fog at Mokpo on the meteorological conditions of north-west/south wind and calm($0{\sim}2m/s$). Also, as the results of analyzing data of before and after the construction of Yeongsan dam, the frequency of annual mean fog days increased 41 %, specially increased 178% in autumn. The increase of fog days mainly resulted from evaporation during colder seasons and from temperature inversion during warmer seasons over the water surface of Yeongsan lake. The construction of Yeongsan dam had a little effect on the meteorological conditions concerning fog occurrence, because Yeongsan dam which only supplies the water for use do not always carry out outlet of the cold water. In addition, the sea fog at Heuksando located in offshore had not effect on the occurrence of fog at Mokpo.

Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties

  • Tewfik, Shadia R.;Sorour, Mohamed H.;Shaalan, Hayam F.;Hani, Heba A.
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Hollow fiber (HF) membranes are gaining wide interest over flat membranes due to their compaction and high area to surface volume ratio. This work addresses the fabrication of HF from polysulfone (PS) and polyethersulfone (PES) using N-methylpyrrolidone (NMP) as solvent in addition to other additives to achieve desired characteristics. The semi-pilot spinning system includes jacketed vessel, four spinneret block, coagulation and washing baths in addition to dryer and winder. Different parameters affecting dry-wet spinning phase inversion process were investigated. Dope compositions of PES, NMP and polyvinyl pyrrolidone (PVP) of varying molecular weights as additive were addressed. Some critical parameters of importance were also investigated. Those include dope flow rate, air gap, coagulation & washing baths and drying temperatures. The measured dope viscosity was in the range from 1.7 to 36.5 Pa.s. Air gap distance was adjusted from 20 to 45 cm and coagulation bath temperature from 20 to $46^{\circ}C$. The HF membranes were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and mechanical properties. Results indicated prevalence of finger like structure and average surface roughness from about 29 to 78.3 nm. Profile of stress strain characteristics revealed suitability of the fibers for downstream interventions for fabrication of thin film composite membrane. Different empirical correlations were formulated which enable deeper understanding of the interaction of the above mentioned variables. Data of pure water permeability (PWP) confirmed that the fabricated samples fall within the microfiltration (MF)-ultrafiltration (UF) range of membrane separation.

Polyethersulfone (PES) ultrafiltration (UF) membranes loaded with silver nitrate for bacteria removal

  • Basri, H.;Ismail, A.F.;Aziz, M.
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.25-37
    • /
    • 2011
  • PES UF membranes containing silver were prepared to impart antibacterial properties for waste water treatment. Asymmetric membranes for antibacterial application were prepared from polyethersulfone (PES) and silver nitrate ($AgNO_3$) (PES/$AgNO_3$=15/2 by weight) solution in N-Methyl-2-pyrrolidone (NMP) via simple wet phase inversion technique. These membranes were characterized by polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) of different molecular weights (1000 ppm in water) at room temperature and on operating pressure of 5 bars. It was observed that the water flux of PES-$AgNO_3$ membrane is slightly lower than virgin PES but still increased linearly with the increment of pressure applied. The morphology of the resulting membranes was examined using Field-Emission Scanning Electron Microscope (FESEM) coupled with Energy Dispersive Spectroscopy (EDS). Elemental analysis using EDS proved that silver is successfully loaded on the membrane surfaces. Due to the success of loading silver on membrane surfaces, antibacterial activities were evaluated via agar diffusion method against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) culture. By incorporating 2 wt% of silver nitrate, PES-$AgNO_3$ showed significant inhibition ring on both E.coli and S.aureus. Filtration of E.coli solution (OD 0.31) showed satisfactory rejection data with ~100% inhibition growth after 24 hours incubation at $37^{\circ}C$. Resultant membranes also exhibit better tensile strength (compared to virgin PES) up to 71% may be due to the suggested interactions. The residual silver during fabrication was measured using ICP-MS and result showed that the residual silver content of PES-$AgNO_3$ membrane was only ~1% of the original silver added in the polymer solution. These studies have shown that PES-$AgNO_3$ UF membranes are potential in improving the filtration in water treatment.

Widely tunable thulium-doped fiber laser anchored on 50-GHz ITU-T grid in S/S+ band (S/S+band에서 넓은 파장가변 영역을 가지고 50-GHz ITU-T격자에 맞는 채널을 생성하는 thulium이 첨가된 광섬유 레이저)

  • 안성준;박철근;안승준;박종한;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.17-21
    • /
    • 2004
  • We demonstrate an S/S+band discretely tunable thulium doped fiber laser (TTDFL), anchored on a 50-㎓ ITU-T grid. Investigating the inversion analysis of the thulium doped fiber (TDF) in applying a dual wavelength (1.4 m and 1.5 m) pumping scheme, a laser whose tuning range covers most of the S/S+band has been obtained. Within the wide 3-㏈ bandwidth of 65.1 nm, the output power of the tunable laser exceeds 6.1 ㏈m with very flat spectral profile and the number of DWDM channels generated is as large as 178. If we increase the subsidiary pump power to 22 ㎽, the bandwidth is expanded up to 66.2 nm. By controlling the temperature of the fine grid filter, we have also shown that the frequency locking capability of the laser can be improved. The laser developed in this work is expected to be utilized as a practical optical source providing reference wavelengths in the S/S+band.

Progress in Novel Oxides for Gate Dielectrics and Surface Passivation of GaN/AlGaN Heterostructure Field Effect Transistors

  • Abernathy, C.R.;Gila, B.P.;Onstine, A.H.;Pearton, S.J.;Kim, Ji-Hyun;Luo, B.;Mehandru, R.;Ren, F.;Gillespie, J.K.;Fitch, R.C.;Seweel, J.;Dettmer, R.;Via, G.D.;Crespo, A.;Jenkins, T.J.;Irokawa, Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • Both MgO and $Sc_2O_3$ are shown to provide low interface state densities (in the $10^{11}{\;}eV^{-1}{\;}cm{\;}^{-2}$ range)on n-and p-GaN, making them useful for gate dielectrics for metal-oxide semiconductor(MOS) devices and also as surface passivation layers to mitigate current collapse in GaN/AlGaN high electron mobility transistors(HEMTs).Clear evidence of inversion has been demonstrated in gate-controlled MOS p-GaN diodes using both types of oxide. Charge pumping measurements on diodes undergoing a high temperature implant activation anneal show a total surface state density of $~3{\;}{\times}{\;}10^{12}{\;}cm^{-2}$. On HEMT structures, both oxides provide effective passivation of surface states and these devices show improved output power. The MgO/GaN structures are also found to be quite radiation-resistant, making them attractive for satellite and terrestrial communication systems requiring a high tolerance to high energy(40MeV) protons.

Measurements of sooting in single droplet combustion under the normal-gravity condition (정상 중력장하의 단일 액적연소에 있어서 매연 농도의 측정)

  • Lee, Gyeong-Uk;Lee, Chang-Eon;O, Su-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.468-480
    • /
    • 1998
  • The temporal and spatial distributions of soot volume fractions were measured for single toluene droplet flames as a function of pressure under the normal-gravity condition. In order to characterize the transient nature of the flame and sooting regions, a full-field light extinction and subsequent tomographic inversion technique was used. The reduction in sooting as a function of pressure was assessed by comparison of the maximum soot volume fractions at several vertical positions along the axis above the droplet. The maximum soot volume fraction was reduced by 70% when the pressure was reduced by 60% from 1 atm to 0.4 atm. The reduction in sooting is attributed to variation of the geometric configuration of flame which reduces the system Grashof number as well as only the change in the adiabatic flame temperature as the pressure decreases. The gravimetrically-measured total soot yield was also compared to the optically-measured soot volume fraction to obtain a correlation between the two measurements. As a result, the total soot yield was linearly proportional to the optically-measured maximum soot volume fraction and linearly reduced as the pressure decreased. Accordingly, the non-intrusive full-field light extinction-measurements were able to be calibrated not only to measure soot volume fraction, but to simultaneously evaluate the total soot yield emitted from the toluene droplet flame (which is useful in the practical application).