• Title/Summary/Keyword: temperature influence

Search Result 4,535, Processing Time 0.034 seconds

The Effect of Ageing on Grain Refinement of CuAlNi Shape Memory Alloy (CuAlNi 형상기억합금의 결정립 미세화에 따른 시효효과)

  • Yang, G.S.;Park, C.S.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.65-74
    • /
    • 1995
  • This research was performed to investigate the effect of ageing on grain refinement of 82wt%Cu-13.5wt%Al-4.5wt%Ni-0.1wt% misch metal alloy with ageing temperature and time. The results obtained in this study are as follows; The variation of transformation temperature with ageing temperature had very influence on ageing time at $300^{\circ}C$. But it had not influence on ageing time at $100^{\circ}C$. The variation of transformation temperature after second reversed transformation cycle was not occured in martensitic phase ageing, but $M_s$ point was appeared equally with third reversed transformation cycle in parent phase ageing. The variation of $M_s$ point was not nearly with ageing time at $100^{\circ}C$ ageing temperature. But it was decreasing with ageing time at $300^{\circ}C$ ageing temperature and $A_s$ point was increasing with ageing time. Structure of parent phase ageing was being M18R martensitic and N2H martensitic phase. It was found that ${\alpha}$ and ${\gamma}_2$ phase were created by ageing of long time at $300^{\circ}C$ ageing temperature.

  • PDF

Effect of Ambient Temperature and Humidity on Corrosion Rate of Steel Bars in Concrete (환경 온·습도가 콘크리트 내 철근의 부식 속도에 미치는 영향 분석)

  • Du, Rujun;Jang, Indong;Cho, Junghyun;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.307-308
    • /
    • 2021
  • Corrosion of reinforced steel inside concrete is an important cause of performance degradation of reinforced concrete structures and has a profound influence on the durability of structures. In this study, three groups of different reinforced concrete structures exposed to the natural environment were subjected to chloride ion accelerated corrosion tests for up to 180 days. The corrosion velocity and ambient temperature of the samples were measured and recorded every day. Based on Faraday's law, the corrosion speed of steel bars could be measured, and the ambient temperature and humidity around the structure in corresponding time were compared. Through the measurement of up to 180 days, the influence of external ambient temperature and humidity on the corrosion speed of steel bars inside the concrete structure was found out. The results show that there is a good direct proportional relationship between temperature and corrosion speed. When the ambient temperature increases by 15℃, the corrosion rate increases by about one time.

  • PDF

A Verification Study on the Temperature reduction Effect of Water Mist Injection

  • Kim, Jeong-Ho;Lee, Myung-Hun;Yoon, Yong-Han
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.5-14
    • /
    • 2015
  • Purpose: Recently, according to climate changes, human health is exposed to danger over the world and they influence all fields of human society. Due to these climate changes, humans can be exposed to more frequent and extreme scorching heat and cold wave than the present. As precautions against these urban higher temperature and dryness, diverse methods are being sought. Among them, as measures to form cold islands, the evaporative cooling effect realistic to social and economic conditions was examined. Method: This study was conducted to analyze effects of temperature reduction and cooling according to injection quantity of minute water particles by using a blast sprayer as one of alternatives of alleviation of urban climate changes in outside space in summer. For this, through temperature difference in accordance with the injection quantity per hour of a day, a time zone representing the value of the highest temperature change was analyzed. Also, by analyzing temperature difference according to the injection quantity per daytime insolation, relation of amounts of insolation and evaporation was investigated. Temperature difference in accordance with distances at the highest temperature with the highest value in temperature changes was analyzed. Result: At the study result, about temperature, as injection quantity increase, temperature reduction was significant statistically at the highest temperature with the most insolation. A factor with the highest influence was judged to be the increase of the injection quantity. According to the injection quantity, it was predicted that $3.1^{\circ}C$ temperature reduction of a daily average in case of 0.16L/min, $3.5^{\circ}C$ temperature reduction of a daily average in case of 0.32L/min, and $4.4^{\circ}C$ temperature reduction of a daily average in case of 0.48L/min.

Estimation of Adiabatic Temperature Rise of Concrete (콘크리트 단열온도 상승 예측에 관한 연구)

  • 방기성;정원섭;송영철;조철희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.934-939
    • /
    • 1998
  • This study discusses the results of adiabatic temperature rise tests which were performed considering various parameters, such as cement type, water-cement ratio, unit cement weigh, admixtures and placing temperature, which influence the temperature rise(K) and reaction velocity ($\alpha$). Theadiabatic temperature rise models obtained from this study are similar to those of Japan Concrete Institute. The models to calculate temperature rise and reaction velocity could be used the analysis f concrete thermal stress.

  • PDF

A Numerical Prediction for Water Quality at the Developing Region of Deep Sea Water in the East Sea Using Ecological Model (생태계모델을 이용한 동해 심층수 개발해역의 수질환경 변화예측)

  • Lee, In-Cheol;Yoon, Seok-Jin;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.34-41
    • /
    • 2008
  • As a basic study for developing a forecasting/estimating system that predicts water quality changes when Deep Sea Water (DSW) drains to the ocean after using it, this study was carried out as follows: 1) numerical simulation of the present state at DSW developing region in the East sea using SWEM, 2) numerical prediction of water quality changes by effluent DSW, 3) analysis of influence degree 'With defined DEI (DSW effect index) at F station. On the whole, when DSW drained to the ocean, Chl-a, COD and water-temperature were decreased and DIN, DIP and DO were increased by effluent DSW, and Salinity was steady. According to analysis of influence degree, the influence degree of DIN was the highest and it was high in order of Chl-a, COD, Water-temperature, DO, DIP and Salinity. The influence degree classified by DSW effluent position was predicted that suiface outflow was lower than bottom outflow. Ad When DSW discharge increased 10 times, the influence degree increased about $5{\sim}14$ times.

Characteristics of Road Weather Elements and Surface Information Change under the Influence of Synoptic High-Pressure Patterns in Winter (겨울철 고기압 영향에서 도로 위 기상요소와 노면정보 변화 특성에 관한 연구)

  • Kim, Baek-Jo;Nam, Hyounggu;Kim, Seon-Jeong;Kim, Geon-Tae;Kim, Jiwan;Lee, Yong Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.329-339
    • /
    • 2022
  • Better understanding the mechanism of black ice occurrence on the road in winter is necessary to reduce the socio-economic damage it causes. In this study, intensive observations of road weather elements and surface information under the influence of synoptic high-pressure patterns (22nd December, 2020 and 29th January, and 25th February, 2021) were carried out using a mobile observation vehicle. We found that temperature and road surface temperature change is significantly influenced by observation time, altitude and structure of the road, surrounding terrain, and traffic volume, especially in tunnels and bridges. In addition, even if the spatial distribution of temperature and road surface temperature for the entire observation route is similar, there is a difference between air and road surface temperatures due to the influence of current weather conditions. The observed road temperature, air temperature and air pressure in Nongong Bridge were significantly different to other fixed road weather observation points.

Measurement Uncertainty Analysis of a Turbine Flowmeter for Fuel Flow Measurement in Altitude Engine Test (엔진 고공 시험에서 연료 유량 측정용 터빈 유량계의 측정 불확도 분석)

  • Yang, In-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Measurement uncertainty analysis of fuel flow using turbine flowmeter was performed for the case of altitude engine test. SAE ARP4990 was used as the fuel flow calculation procedure, as well as the mathematical model for the measurement uncertainty assessment. The assessment was performed using Sensitivity Coefficient Method. 11 parameters involved in the calculation of the flow rate were considered. For the given equipment setup, the measurement uncertainty of fuel flow was assessed in the range of 1.19~1.86 % for high flow rate case, and 1.47~3.31 % for low flow rate case. Fluctuation in frequency signal from the flowmeter had the largest influence on the fuel flow measurement uncertainty for most cases. Fuel temperature measurement had the largest for the case of low temperature and low flow rate. Calibration of K-factor and the interpolation of the calibration data also had large influence, especially for the case of very low temperature. Reference temperature, at which the reference viscosity of the sample fuel was measured, had relatively small contribution, but it became larger when the operating fuel temperature was far from reference temperature. Measurement of reference density had small contribution on the flow rate uncertainty. Fuel pressure and atmospheric pressure measurement had virtually no contribution on the flow rate uncertainty.

Properties of Light Weight Foamed Concrete According to Curing Condition (양생조건에 따른 경량기포콘크리트의 특성)

  • Shin, Sang-Chul;Choi, Ji-Ho;Hong, Sung-Rog;Kim, Ji-Ho;Jeong, Ji-Yong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.237-239
    • /
    • 2011
  • This study was performed to investigate the influence of curing temperature on the properties of light weight foamed concrete, manufactured on-site construction according to the various experimental factor such as temperature of material, curing temperature in air(5, 10, 20℃), curing time in air(5, 10, 15hour), and target density of hardened state(0.8, 1.2t/㎥). As a result, the influence of the curing temperature on various properties of foamed concrete is greater than curing time. When increasing temperature and time in air curing, progress of hydration is fast and compressive strength is increasing more and more. However, when considering the productivity, minimum curing time is required 15hours at 5℃, 10hours at 10℃, and 5hours at 20℃. If this condition is not required, there is some crack due to volume expansion on the surface of light weight foamed concrete.

  • PDF

Finite Element Analysis on Hydration Heat of Concrete under the Influence of Reinforcing Steel Bars

  • Yoon, Dong-Yong;Song, Hyung-Soo;Min, Chang-Shik
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.33-39
    • /
    • 2007
  • The magnitude and distribution of hydration heat of concrete structures are related to the thermal properties of each component of the concrete, the initial temperature, the type of formwork, and the ambient temperature of exposed surfaces. Even though the reinforcing steel bar has completely different thermal properties, it has been excluded in the thermal analysis of the concrete structures for uncertain reasons. In this study, finite element analysis was performed on the concrete structures reinforced with steel bars in order to investigate the effect of reinforcing steel bars on the temperature and stress distribution due to the heat of hydration. As the steel content increased, the maximum temperature and the difference in the internal-external temperature decreased by 32.5% and 10.0%, respectively. It is clearly shown that the consideration of the influence of reinforcing steel bars in the heat of hydration analysis is necessary to obtain realistic solutions for the prediction of the maximum temperature and stresses of concrete structures.