• 제목/요약/키워드: temperature fluctuation

검색결과 634건 처리시간 0.045초

제주도 한림 연안 정치망 어장의 환경특성과 어획량 변동에 관한 연구 III. 어획량변동과 환경요인 (Environmental Character and Catch Fluctuation of Set Net Ground in the Coastal Water of Hanlim in Cheju Island III. Environmental Character and Catch Fluctuation)

  • 김준택;정동근;노홍길
    • 한국수산과학회지
    • /
    • 제32권1호
    • /
    • pp.105-111
    • /
    • 1999
  • 제주도 서부 연안역인 한림 정치망어장의 해황과 어획량 변동과의 관계를 파악하기 위해 1995년$\~$1996년에 실시한 정선 및 정점조사의 수온 및 염분자료, 시계열분석, 단기변동, 해수유동상황과 1994년$\~$1996년의 한림 정치망의 어획량 변동에 관해 검토가 분석한 결과를 요약하면 다음과 같다. 1) 한림 정치망에 가장 많이 잡히는 어종은 전갱이 ($69.2\%$)이고 그 다음으로 고등어 ($18.4\%$), 갈치 ($5.6\%$), 오징어($2.7\%$), 독가시치 ($1.4\%$)의 순이며. 조업기간은 5월에서 12월까지로 6월과 10월에 어획량의 피크가 있고 이중 10월에 년중 최고 어획량이 나타난다. 2) 한림 정치망에서는 밀물인 북류성분과 썰물인 남류성분이 명료히 나타나 해수의 연직혼합이 원활하고 남류의 지속기간(3시간 이상)이 길어 외측의 중$\cdot$저층수가 강하게 영향을 미쳐 어장까지 공급되어, 일별 평균수온이 낮고 염분 상승내지는 고염분수가 출현할 때 좋은 어획량을 보이는 경향이 있다. 또 대조기인 망이나 삭보다 소조기인 상$\cdot$하현에 어획량이 많g으며, 남$\~$남동풍이 3$\~$6.5m/sec정도 볼 때 호어가 나타날 가능성이 높다.

  • PDF

Production Ecology of the Seagrass Zostera marina in Jindong Bay, Korea

  • Lee, Kun-Seop;Park, Jung-Im;Chung, Ik-Kyo;Kang, Dong-Woo;Huh, Sung-Hoi
    • ALGAE
    • /
    • 제19권1호
    • /
    • pp.39-47
    • /
    • 2004
  • Production dynamics of eelgrass, Zostera marina was examined in Jindong Bay on the south of the Korea peninsula. Eelgrass leaf productivities and environmental factors such as underwater photon flux density, water temperature, and nutrient availabilities in the water column and sediments were monitored from March 2002 to December 2003. While water temperature exhibited a distinct seasonal trend, underwater irradiance and nutrient availabilities exhibited high degree of fluctuation, and did not show a seasonal trend throughout the experimental periods. Eelgrass leaf elongation and production rates showed significant seasonal variations. Leaf productivity was highest in May (30.0 mg dry wt sht$^{-1}$ d$^{-1}$ or 3.7g dry wt m$^{-2}$d$^{-1}$) and lowest in November (3.2 mg dry wt sht$^{-1}$ d$^{-1}$ or 0.12 g dry wt m $^{-2}$ d$^{-1}$). Eelgrass leaf productivities did not show a strong correlation with underwater irradiance or environmental nutrient availabilities. The production rates, however, were positively correlated with water temperature during spring periods, and were correlated negatively at high water temperature exceeded 20℃ during summer months. While relative growth rates were highest in spring and lowest in high water temperature periods, plastochrone interval was longest during summer and shortest during spring. These results imply that seasonal growth dynamics of eelgrass, Z. marina was mainly controlled by water temperature.

Micro-computer를 이용(利用)한 Greenhouse의 온도제어(溫度制御) System 개발(開發)에 관한 연구(硏究) (A Study on the Development of Greenhouse Temperature Control System by Using Micro-computer)

  • 서원명;민영봉;윤용철
    • Journal of Biosystems Engineering
    • /
    • 제15권2호
    • /
    • pp.134-142
    • /
    • 1990
  • This study was carried out for the development of greenhouse temperature control system by modifying an APPLE-II microcomputer attached with several interface systems. The interface systems are composed of 12 bit A/D converter, output port, multiplexer, time clock, etc. Under the operation of developed system, the greenhouse temperature was to be manipulated within the setting temperatures assumed to be appropriate for certain plant growth. The temperature control equimpents installed in the greenhouse are one-speed propeller type fan and two-phase electric heater, which are selectively started or stopped according to the control logic programmed in the control system. The results are summarized as follows : 1. The difference between two temperatures measured by the developed system and the self-recording thermometer calibrated with standard thermometer was less than $1^{\circ}C$. 2. When the temperature were measurd by 12 bit A/D converter and both electric heater and ventilation fan were controlled by developed ON/OFF logic, greenhouse temperature showed narrow fluctuation bands of less than $1^{\circ}C$ near the setting temperatures. 3. The temperature acquisition and control system developed in this study is expected to be applicable to environment control system such as greenhouse only by modifying the logic based on long term experimental data. 4. In order to reduce the measurement error and to increase the system control efficiency, it is recommended that continuous study should be carried out in the aspect of eliminating various systematic noises and improving the environmental control logic.

  • PDF

Experimental and Analytical Study on the Bus Duct System for the Prediction of Temperature Variations Due To the Fluctuation of Load

  • Thirumurugaveerakumar, S.;Sakthivel, M.;Valarmathi, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2036-2041
    • /
    • 2014
  • In this paper, a thermal model is developed for the bus bar system to predict the temperature variation during the transient time period and to calculate both the steady-state and transient electrical current carrying capacity (ampacity) of bus bar. The bus bar system installed in the power house of Kumaraguru College of Technology, Coimbatore has been considered. Temperature variation predicted in the modelling is validated by observing the current and steady state temperatures in different feeders of the bus bar. Magnetic field of the extreme phases R and B induces more current in the middle phase Y. Hence, the steady state temperature in the phase Y is greater than other two phases. The transient capabilities of the bus bar are illustrated by calculating the variations in the bus bar temperature when it is subjected to a step change in current during the peak hours due to increase in hostel utilities and facilities (5.30 pm to 10.30 pm). The physical and geometrical properties of the bus bar and temperature variation in the bus bar are used to estimate the thermal time constants for common bus bar cross-sections. An analytical expression for the time constant of the bus bar is derived.

Effects of Insulation Layer upon the Thermal Behavior of Linear Motors

  • Eun, In-Ung
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.896-905
    • /
    • 2003
  • A linear motor has many advantages next to conventional feed mechanisms: high transitional speed and acceleration, high control performance, and good positioning accuracy at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has a long lifetime, and is easy to assemble. A disadvantage of the linear motor is low efficiency and resultant high-temperature rise in itself and neighboring structures during operation. This paper presents the thermal behavior of the linear motor as a feed mechanism in machine tools. To improve the thermal behavior, an insulation layer is used. By placing the insulation layer between the primary part and the machine table, both the temperature difference and the temperature fluctuation in the machine table due to a varying motor load are reduced.

Thermal Striping 해석 난류모델 평가 (EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRIPING)

  • 최석기;김세윤;김성오
    • 한국전산유체공학회지
    • /
    • 제10권4호통권31호
    • /
    • pp.1-11
    • /
    • 2005
  • A numerical study of the evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple-jet flow with the same velocity but different temperatures. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLEC algorithm. The results of the present study show that the temporal oscillation of temperature is predicted by the SST and V2-f models, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. In addition, it is shown that both the two-layer and SST models have nearly the same capability predicting the thermal striping, and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

퍼지규칙과 신경회로망을 이용한 전기로 온도제어 (Temperature control of electric furnace using fuzzy rules and neural net)

  • 문석우;강민구;이종호;허욱열;이봉국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.872-877
    • /
    • 1991
  • This paper presents the composite control method using fuzzy and neural network theory. Fuzzy theory is applied to make control rules and neural net is used to learn them and to generate proper control signals. The electric furnace is controlled to maintain the desired temperature and to minimize the fluctuation of the temperatures in various locations inside the furnace. This controller consists of three neural nets which deal with the average of the temperatures, variances of them and the temperature stabilizing mechanism. Experiments are performed with the target temperatures of 70.deg. C and 80.deg. C. Test results show that this simple method is very effective.

  • PDF

가열된 원주후류의 열성층 영향에 대한 연구 (A Study on the Effect of Thermal Stratification of a Heated Cylinder Wake)

  • 김경천;정양범
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2454-2462
    • /
    • 1994
  • The effects of thermal stratification on the flow of a stratified fluid past a heated circular cylinder were examined in a wind tunnel. Turbulent intensities, rms values of temperature and turbulent convective heat flux distributions in the heated cylinder wake with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. A phase averaging method was also used to estimated coherent motion in the near wake. It is found that the vertical turbulent motion in the stably stratified flow case dissipates faster than that of the neutral case, i.e., vertical growth of vortical structure is suppressed under the strongly stratified condition. The coherent motion of temperature makes a large contribution like velocity coherent motion. However, the coherent motions of temperature fluctuation become very different with the change of experimental conditions, though the velocity coherent motions are quite similar in all experimental conditions.

흡수식 냉동기 고온재생기 내의 가스복사체 열전달 특성에 관한 연구 (A study on the heat transfer characteristics of gas-radiative medium into a high temperature generator of an absorption refrigerator)

  • 정대인;김용모;배석태
    • 태양에너지
    • /
    • 제18권1호
    • /
    • pp.81-89
    • /
    • 1998
  • In this paper an experimental was done to design combustion chambers which is required radiation strength of high temperature generator of absorption rigerator. Partiqularly, in combustion chamber radiative mediums were set and basic experiments were done according to its size by radiation strength and effects of heat transfer promotion. The results are as follows : 1) When radiative mediums were set in small combustion furnace burning nonframely radiative heat transfer was effected. 2) In case that area ratio($A/A_o$) of radiative medium is 0.82 or over, temperature fluctuation effects of furnace inside were not nearly. 3) In experimental boundary heat transfer effects were 1.8 times by setting up radiative medium. Specially, $q/{\Delta}T$ values of furnace inside were uniformed nearly by setting up radiative mediums.

  • PDF

The Effect of Fluctuations in Photoperiod and Ambient Temperature on the Timing of Flowering: Time to Move on Natural Environmental Conditions

  • Song, Young Hun
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.715-721
    • /
    • 2016
  • Plants have become physiologically adapted to a seasonally shifting environment by evolving many sensory mechanisms. Seasonal flowering is a good example of adaptation to local environmental demands and is crucial for maximizing reproductive fitness. Photoperiod and temperature are major environmental stimuli that control flowering through expression of a floral inducer, FLOWERING LOCUS T (FT) protein. Recent discoveries made using the model plant Arabidopsis thaliana have shown that the functions of photoreceptors are essential for the timing of FT gene induction, via modulation of the transcriptional activator CONSTANS (CO) at transcriptional and post-translational levels in response to seasonal variations. The activation of FT transcription by the fine-tuned CO protein enables plants to switch from vegetative growth to flowering under inductive environmental conditions. The present review briefly summarizes our current understanding of the molecular mechanisms by which the information of environmental stimuli is sensed and transduced to trigger FT induction in leaves.