• 제목/요약/키워드: temperature estimation

검색결과 1,637건 처리시간 0.026초

온도, 습도 및 냉방부하 예측에 관한 연구 (A Study on the Estimation of Temperature, Humidity and Cooling Load)

  • 유성연;한승호;이제묘;한규현;노관종
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.80-85
    • /
    • 2006
  • The peak demand of electricity in summer season mainly comes from the day time cooling loads. Ice thermal Storage System (ITSS) uses off-peak electricity at night time to make ice for the day time cooling. In order to maximize the use of cold storage in ITSS, the estimation of day time cooling load for the building is necessary. In this study, we present a method of cooling load estimation using 5 years of normalized outdoor temperature, relative humidity, and the building construction data. We applied the hourly-based estimation to a general hospital building with relatively less sudden heat exchange and the results are compared with the measured cooling load of the building. The results show that the cooling loads estimation depends on the indoor cooling design temperature of the building.

  • PDF

대면적 서셉터의 온도 균일도 검증 알고리즘 (A Verification Algorithm for Temperature Uniformity of the Large-area Susceptor)

  • 양학진;김성근;조중근
    • 한국정밀공학회지
    • /
    • 제31권10호
    • /
    • pp.947-954
    • /
    • 2014
  • Performance of next generation susceptor is affected by temperature uniformity in order to produce reliably large-sized flat panel display. In this paper, we propose a learning estimation model of susceptor to predict and appropriately assess the temperature uniformity. Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) are compared for the suitability of the learning estimation model. It is proved that SVMs provides more suitable verification of uniformity modeling than ANNs during each stage of temperature variations. Practical procedure for uniformity estimation of susceptor temperature was developed using the SVMs prediction algorithm.

복잡지형 경사면의 일사 영향을 반영한 매시 낮 기온 추정 방법 (Estimation of hourly daytime air temperature on slope in complex terrain corrected by hourly solar radiation)

  • 윤은정;김수옥
    • 한국농림기상학회지
    • /
    • 제20권4호
    • /
    • pp.376-385
    • /
    • 2018
  • 일출 이후부터 일몰 전까지 낮 동안 태양 일사로 인한 복잡지형 내 산사면 매시 기온 분포를 추정하기 위해, 동향사면과 서향사면 간 대표 기상관측지점에 대하여 매시 일사량 편차에 따른 관측기온의 편차(기온변화량)로 경험식을 산출하였다. 해당 경험식으로 일사효과를 모의하여 2015년 1월부터 2017년 12월까지 농산촌 지역 기상관측지점 11곳에 대해 매시 기온을 추정한 후 검증하였다. 매시 기온감률로 해발고도 보정만을 수행한 결과와 대조하였을 때, 일차식 형태의 경험식을 이용할 경우, 오전 9시부터 오후 3시까지 기온의 과소추정경향이 감소되어 추정오차를 줄일 수 있었다. 다만, 오후 5~6시에는 관측값 대신 기하학적 조건으로 계산된 경사면 일사량 편차로 도출된 hyperbolic equation이 더 추정오차가 작았다. 오후 3시 기준의 한낮기온은 선행연구에서 제시한 기존 모형과 추정신뢰도를 대조하였는데, 기존 모형의 추정오차(ME $-1.20^{\circ}C$, RMSE $2.01^{\circ}C$)를 ME $-0.28^{\circ}C$, RMSE $1.29^{\circ}C$까지 개선시킬 수 있었다.

역열전도 기법을 이요한 복잡재료의 열물성치의 산정 (Inverse Estimation of Thermal Properties for APC-2 Composite)

  • 정법성;김선경;김희준;이우일
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.673-679
    • /
    • 2001
  • The objective of this work is to estimate the temperature dependent thermal properties of the APC-2 composite using a inverse parameter estimation technique. The present inverse method features the estimation of the thermal conductivity and the volumetric heat capacity, which are dependent on the temperature inside the composite. Furthermore, the thermal conductivity is directionally dependent because of the aniosotropy of the composite. An on-line temperature measurement system with a suitable method of heating is built. A composite slab is fabricated using thermoplastic prepreg for the investigation. The corresponding computer code for evaluating the thermal properties inversely using the temperature reading transmitted from the measurement system is developed. The parameterized form is used for the rapid and stable estimation. The modified Newtons method is adopted for the solution technique of the inverse analysis. The estimated results are compared with the measured data from a previous study for the verification.

퀜치시 초전도 변압기의 최대온도에 철심이 미치는 영향 (Iron Core Effects on Maximum Temperature Rise of Superconducting Transformer during Quench)

  • 나완수;주진호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권1호
    • /
    • pp.7-12
    • /
    • 1999
  • In this paper, the analytical results on the maximum temperature rise estimation, taking account of the magnetizing current, are presented. Magnetizing current effects are considered for the maximum temperature rise estimation during quenches. By introducing the first order model of the infinite solenoids, we calculate the magnetizing and leakage inductances of the coaxial-wound-superconducting transformers. As the permeability of the transformer core increases, so does the magnetizing inductance, while the leakage inductances and the magnetizing current of the transformer go down. These varying permeability effects on maximum temperature rise estimation is applied to the superconducting transformers, of which specifications have already been published. The calculated results showed sufficient margins to the thermal damage.

  • PDF

참외 과중에 영향을 미치는 환경요인 분석 (Environmental Factor Analysis Affecting Fruit Weight of Korean Melon)

  • 최돈우;도한우;최홍집;류영현;임청룡
    • 농촌계획
    • /
    • 제27권2호
    • /
    • pp.43-48
    • /
    • 2021
  • In this study, an analysis was performed using the growth data and environment data of Korean melon farmers to confirm the influence of environmental factors variables on fruit weight of Korean melon. The analysis results can be summarized as follows. First, it was confirmed that humidity and temperature were recognized as the most important factors among the core factors of korean melon farm production management. Second, The correlation analysis of fruit weight and environmental factors showed a statistically significant soil temperature, internal humidity. Third, The Pooled OLS model estimation results showed that the estimation coefficient for soil temperature is (-), and the estimation coefficient for soil temperature square is (+), indicating that optimal control temperature exists.

An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel

  • Khambampati, Anil Kumar;Kim, Kyung Youn;Hur, Seop;Kim, Sung Joong;Kim, Jung Taek
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.532-548
    • /
    • 2021
  • Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.

고속 열처리 시스템에서 웨이퍼 상의 다중점 계측에 의한 온도 분포 추정 기법 연구 (A Prediction Method of Temperature Distribution on the Wafer in a Rapid Thermal Process System with Multipoint Sensing)

  • 심영태;이석주;민병조;조영조;김학배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권2호
    • /
    • pp.62-67
    • /
    • 2000
  • The uniformity of temperature on a wafer is one of the most important parameters to control the RTP (Rapid Thermal Process) with proper input signals. Since it is impossible to achieve the uniformity of temperature without exact estimation of temperature at all points on the wafer, the difficulty of understanding internal dynamics and structural complexities of the RTP is a primary obstacle to accurately measure the distributed temperatures on the wafer. Furthermore, it is also hard to accomplish desirable estimation because only few pyrometers have been commonly available in the general equipments. In the paper, a thermal model based on the chamber geometry of the AST SHS200 RTP system is developed to effectively control the thermal uniformity on the wafer. First of all, the estimation method of one-point measurement is developed, which is properly extended to the case of multi-point measurements. This thermal model is validated through certain simulation and experiments. The work can be usefully contributed to building a run-by-run or a real-time controls of the RTP.

  • PDF

온도의 영향성을 고려한 리튬폴리머 전지의 절대용량 추정 방법 (Absolute Capacity Estimation Method with Temperature Effect for a Small Lithium-polymer Battery)

  • 김한경;곽기호
    • 한국군사과학기술학회지
    • /
    • 제19권1호
    • /
    • pp.26-34
    • /
    • 2016
  • Military devices and systems powered by batteries need to operate at extreme temperature and estimate the available capacity of the battery at different temperature conditions. However, accurate estimation of battery capacity is challenging due to the temperature-sensitive nature of electrochemical energy storage. In this paper, Peukert's equation with temperature factor is derived, and methods for estimating the absolute capacity of lithium-polymer battery and the state-of-charge(SOC) with respect to varying currents and temperatures are presented. The proposed estimation method is experimentally verified under three different discharge currents(0.5 A, 1 A, 3 A) and six different temperatures ranging from -30 to 45 deg. C. The results show the proposed method reduces the Peukert's estimation error by up to 30 % under or at extreme condition.

BWIM방법을 이용한 차량 정보 추정시 정밀도 향상 방안에 관한 연구 (A Study on Accuracy Improvement for Estimation of Vehicle Information Using BWIM Methodology)

  • 황효상;경갑수;이희현;전준창
    • 한국안전학회지
    • /
    • 제28권1호
    • /
    • pp.63-73
    • /
    • 2013
  • Dynamic strain history curve measured in the field is influenced by various factors such as vehicle type, speed, noise, temperature and running location etc.. Because such curve is used for vehicle weight estimation methodology suggested by Moses, exact strain history curve is the most important thing for exact estimation of vehicle weight. In this paper, effect of such factors mentioned above is investigated on the measured strain history curves, and results of weight estimation of vehicles are discussed quantitatively. From this study, it was known that temperature effect contained in the strain history curve measured for long time in-site gives the biggest effect on result of weight estimation and it can be removed by using the mode value. Furthermore, gross vehicle weight can be estimated within 5% error corresponding to A class of the European classification if effects of temperature and noise are removed and vehicle properties such as speed, axle arrangement and running location are considered properly.