• Title/Summary/Keyword: temperature difference energy

Search Result 1,108, Processing Time 0.029 seconds

저온 잠열 축열조내의 열유동 특성에 관한 연구 (A study on Characteristics of Heat Flow of Low Temperature Latent Thermal Storage System)

  • 이원섭;박정원
    • 태양에너지
    • /
    • 제19권4호
    • /
    • pp.33-43
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual all-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. With the relation of the aspect ratio(H/D) in the storage tank, the stratification is formed better as inlet flow rate is smaller. If the inlet and the outlet port are settled at the upside and downside of the storage tank, higher storage rate could be obtainable. In case that the flow directions inside the thermal storage tank are the upward flow in charging and the downward in discharging, thermal stratification is improved because the thermocline thickness is maitained thin and the degree of stratification increases respectively. In the charging process, in case of inlet flow rate the thermal stratification has a tendency to be improved with the lower flow rate and smaller temperature gradient in case of inlet temperature, the large temperature difference between inflowing water and storage water are influenced from the thermal conduction. The effect of the reference temperature difference is seen differently in comparison with the former study for chilled and hot water. In the discharging process, the thermal stratification is improved by the effect of the thermal stratification of the charging process.

  • PDF

에너지플러스 시뮬레이션을 통한 하천수 열원 히트펌프 시스템의 적용 가능성 분석 (An Applicability Analysis of River Water Source Heat Pump System using EnergyPlus Simulation)

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.10-21
    • /
    • 2022
  • A water source heat pump (WSHP) system is regarded as an energy-efficiency heating and cooling supply system for buildings due to its high energy efficiency and low greenhouse gas emissions. Recently, water sources such as river water, lake water, and raw water are attracting attention as heat sources for a heat pump system in Korea. This paper analyzed the applicability of a river water source heat pump system (RSHP). The river water temperature level was compared with the outdoor air and ground temperature levels to present applicability. In addition, the cooling and heating performance were compared through a simulation approach for the RSHP and a ground source heat pump (GSHP) applied to a large-scale office building. To compare the temperature level, the actual data were applied to the river water and the outdoor air, while the simulation results were applied to the ground circulation water. The results showed that the change in river water temperature throughout the year was similar to the change in outdoor air temperature. However, unlike the outdoor air temperature, the difference between the hourly and daily average river water temperatures was not large. The temperature level of river water was lower during the heating season and somewhat higher during the cooling season than that of the ground circulation water. Finally, the performance of the RSHP system was 13.4% lower than that of the GSHP system on an annual-based.

Energy Storage Characteristics in Fixed Beds;Part 1. Charging Mode

  • Hassanein, Soubhi A.;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.158-164
    • /
    • 2004
  • In the present work, the numerical model was refined to predict the thermal analysis of energy storage in a fixed beds during charging mode. The governing energy equations of both fluid and the solid particles along with their initial and boundary conditions are derived using a two-phase, one dimensional model. The refined model is carried out by taking into account change of (air density , air specific heat) with air temperature and also by taking into considerations heat losses from bed to surrounding. Finite difference method was used to obtain solution of two governing energy equations of both fluid and solid particles through a computer program especially constructed for this purpose. The temperature field for the air and the solid are obtained, also energy stored inside the bed is computed. A comparison between refined model and non refined model is done. Finally using refined model the effect of bed material (Glass, Fine clay ,and aluminum ), and air flow rate per unit area Ga (0.3, 0.4, and 0.5 kg/$m^2$-s) on energy storage characteristics was studied.

  • PDF

터널 라이닝 내부에 설치한 열교환기의 현장모니터링 연구 (Study on long-term monitoring of heat exchanger installed in the tunnel lining)

  • 이철호;박문서;최항석;손병후;정재형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.195.1-195.1
    • /
    • 2011
  • This paper presents an experimental study on a new potential geothermal energy source obtained from tunnel structures. An "energy textile", which is a textile-type ground heat exchanger, was fabricated between a shotcrete layer and a guided drainage geotextile in the tunnel lining system. To examine the long-term thermal behavior of the energy textile, the difference in temperatures of the inlet and outlet fluid circulating through the heat exchange pipe within the energy textile was monitored using a constant-temperature water bath. Daily heat exchange rate of the energy textile during cooling operation was estimated from the measured temperatures of the inlet and outlet fluid through the energy textile. The air and ground temperature was also continuously monitored. The operation of the energy textile as a ground heat exchanger was simulated using a 3D numerical CFD model (Fluent). The thermal conductivity of shotcrete and concrete lining components and temperature variation of air in the tunnel were incorporated in the model. The numerical analysis shows a good agreement with the long-term monitoring result.

  • PDF

스노우팩-융설 계산을 위한 에너지수지 알고리즘 (An Energy Budget Algorithm for a Snowpack-Snowmelt Calculation)

  • 이정훈;고경석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권5호
    • /
    • pp.82-89
    • /
    • 2011
  • Understanding snowmelt movement to the watershed is crucial for both climate change and hydrological studies because the snowmelt is a significant component of groundwater and surface runoff in temperature area. In this work, a new energy balance budget algorithm has been developed for melting snow from a snowpack at the Central Sierra Snow Laboratory (CSSL) in California, US. Using two sets of experiments, artificial rain-on-snow experiments and observations of diel variations, carried out in the winter of 2002 and 2003, we investigate how to calculate the amount of snowmelt from the snowpack using radiation energy and air temperature. To address the effect of air temperature, we calculate the integrated daily solar radiation energy input, and the integrated discharge of snowmelt under the snowpack and the energy required to generate such an amount of meltwater. The difference between the two is the excess (or deficit) energy input and we compare this energy to the average daily temperature. The resulting empirical relationship is used to calculate the instantaneous snowmelt rate in the model used by Lee et al. (2008a; 2010), in addition to the net-short radiation. If for a given 10 minute interval, the energy obtained by the melt calculation is negative, then no melt is generated. The input energy from the sun is considered to be used to increase the temperature of the snowpack. Positive energy is used for melting snow for the 10-minute interval. Using this energy budget algorithm, we optimize the intrinsic permeability of the snowpack for the two sets of experiments using one-dimensional water percolation model, which are $52.5{\times}10^{-10}m^2$ and $75{\times}10^{-10}m^2$ for the artificial rain-on-snow experiments and observations of diel variation, respectively.

공동주택의 하절기 자연환기 시 지붕면 일사수열이 최상층 실내온열환경에 미치는 영향 분석 (Analysis of the Irradiated Solar Heat Effect on Indoor Thermal Environment of the Top Floor Units of Apartment Houses in the Summer - On Condition that All Openings of the Units are Opened -)

  • 최동호
    • 한국태양에너지학회 논문집
    • /
    • 제25권1호
    • /
    • pp.45-55
    • /
    • 2005
  • In the summer, the irradiated solar heat gain through the roof has an effect on the thermal environment of the top floor units of apartment houses. This paper investigated the differences of the indoor air temperature, globe temperature and thermal comfort index between the top floor unit and the middle floor unit by measuring them at the sample units on the condition that all the openings of the units are opened. The purpose of this paper is to provide quantitative data about the irradiated solar heat gain during the summertime through the roof of an apartment house and these data to be the source to reevaluate the appropriate roof insulation efficiency. From this study, we obtained three brief results as follows. Indoor air temperature difference between the two sample units shifts a day. Indoor air temperature at the top floor unit is $0{\sim}1.8^{\circ}C$ higher than that of the middle floor unit from 12:00 p.m. to 12:00 a.m. and $0{\sim}2.8^{\circ}C$ lower from 12:00 a.m. to 12:00 p.m. The evaluation of the indoor thermal comfort index and the globe temperature shows similar results as the indoor air temperature measuring. Results of this experiment verified the actual existence of indoor air temperature difference between the top floor unit and the middle one and this difference comes from the heat storage of the roof.

디젤차량 연비시험에 있어 시험온도 및 냉각팬 조건이 미치는 영향분석에 관한 연구 (A Study on the Influence of Test Temperature & Cooling Fan Condition on the Fuel Test of Diesel Vehicle)

  • 김현진;김성우;임재혁;노경하;이정천;김기호;오상기
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.46-55
    • /
    • 2017
  • Due to the arise of natural disasters caused by global warming, consumers have more interest in the fuel efficiency of their vehicles, and fuel efficiency became an important factor in comparing vehicles. In this market situation, methods to measure fuel efficiency has become one of the main interests of vehicle related organizations and laboratories, and the current method to measure fuel efficiency is to follow the notification established by the ministry of trade, industry and energy, ministry of environment, and the ministry of land, infrastructure and transport. In this study, we analyze the influence of vehicle fuel efficiency according to test temperature and cooling fan condition which have the possibility to cause difference in fuel efficiency. The analysis results of the influence of the fuel efficiency according to the test temperature, the difference of the fuel efficiency of the test temperature ($21{\sim}29^{\circ}C$) within the allowable range of the notification showed a maximum difference of 2.9%. Therefore, it is necessary to consider the introduction of a test method that permits only the temperature change based on the reference point as the allowable range even in the test within the allowable range. The analysis of the influence of the fuel efficiency according to the cooling method showed no significant effect, and it seems reasonable to maintain the test method of the current notification.

열전소자의 열적조건 변화에 따른 발전 특성 (Performance of Thermoelectric Power Generator with Various Thermal Conditions)

  • 한훈식;김명기;엄석기;김서영
    • 설비공학논문집
    • /
    • 제22권3호
    • /
    • pp.165-170
    • /
    • 2010
  • Experiments have been performed to investigate the key parameters determining the performance of thermoelectric power generation. The experimental results obtained show that the power output significantly increases with the temperature difference between cold and hot sides of thermoelectric generator. However, the effect of the hot side temperature under the identical temperature difference on the overall performance of a thermoelectric generator is meager. The conversion efficiency defined as the ratio of the power generated to the heat absorbed at the hot side increases with the temperature difference. The behavior of the thermoelectric generator is shown to be consistent with the theoretical analysis. The optimum current giving the maximum conversion efficiency and the maximum conversion efficiency are linearly increased with the temperature difference.

35톤급 FRP선박 외판재의 충격파괴거동에 관한 연구 (A Study on the Impact Fracture Behavior of Side Plate of 35 Ton Class FRP Ship)

  • 김형진;이진정;고성위;김재동
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.137-142
    • /
    • 2005
  • The effects of temperature and initial crack length on impact fracture behavior of side plate material of 35 ton class FRP ship, which are composed by glass fiber and unsaturated polyester resin, were investigated. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decrease in temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increase in initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$,. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/EP composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyester resin. Further, decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photograph of impact fracture surface.

  • PDF