• Title/Summary/Keyword: temperature dependent material properties

Search Result 359, Processing Time 0.027 seconds

Characteristics of the SrBi2Nb2O9 Thin Films Deposited by RF Magnetron Sputtering with Controlling of Bi Contents (RF마그네트론 스퍼터링 법에 의해 증착된 SrBi2Nb2O9 박막의 Bi 량의 조절에 따른 특성분석)

  • Lee, Jong-Han;Choi, Hoon-Sang;Sung, Hyun-Ju;Lim, Geun-Sik;Kwon, Young-Suk;Choi, In-Hoon;Son, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.962-966
    • /
    • 2002
  • The $SrBi_2$$Nb_2$$O_{9}$ (SBN) thin films were deposited with $SrNb_2$$O_{6}$ / (SNO) and $Bi_2$$O_3$ targets by co-sputtering method. For the growth of SBN thin films, we adopted the various power ratios of two targets; the power ratios of the SNO target to $Bi_2$$O_3$ target were 100 W : 20 W, 100 W : 25 W, and 100 W : 30 W during sputtering the SBN films. We found that the electrical properties of SBN films were greatly dependent on Bi content in films. The $Bi_2$Pt and $Bi_2$$O_3$ phase as second phases occurred at the films with excess Bi content greater than 2.4, resulting in poor ferroelectric properties. The best growth condition of the SBN films was obtained at the power ratio of 100 W : 25 W for the two targets. At this condition, the crystallinity and electrical properties of the films were improved at even low annealing temperature as $700^{\circ}C$ for 1h in oxygen ambient and the Sr, Bi and Nb component in the SBN films were about 0.9, 2.4, and 1.8 respectively. From the P-E and I-V curves for the specimen, the remnant polarization value ($2P_{r}$) of the SBN films was obtained about 6 $\mu$C/c $m^2$ at 250 kV/cm and the leakage current density of this thin film was $2.45$\times$10^{-7}$ $A/cm^2$ at an applied voltage of 3 V.V.

A Change of Z-directional Structure in Multi-ply Sheet by Calendering (캘린더 처리에 의한 다층지의 두께방향 구조 특성 변화)

  • Youn, Hye-Jung;Lee, Hak-Lae;Chin, Seong-Min;Jung, Hyun-Do
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.23-32
    • /
    • 2005
  • A change of z-directional structural and surface properties by calendering has a great influence on liquid penetration into a sheet. It could be also important for multi-ply sheet because it contacts liquid dunhg coating or converting process. Therefore, this study was aimed to evaluate of a change of z-directional structure in multi-ply sheet by calendering. To do this, multi-ply sheets were prepared with various raw materials and calendered at the different pressure and temperature conditions. In multi-ply sheet which consisted of one kind of pulp fiber, thickness reductions were higher in top and bottom plies than in middle plies. And in the case of soft nip calender treatment with high temperature, top layer which was in contact with heating roll showed the highest reduction of thickness. Hard nip calender treatment showed U-shaped density profile in z-direction, but compression profile by SNC treatment was dependent on calendering condition. To examine z-directional structure of multi-ply sheet which was composed of different raw material for each layer, CLSM (Confocal Laser Scanning Microscopy) analyses were carried out on cross direction of sheet. It turned out to be a useful tool for investigating z-directional analysis. As a result, variation of thickness reduction in z-direction is dependent on ply structure, compressibility of pulp fiber, and calendering condition.

A Theoretical Study on the Characteristics of Fire Resistance for the Concrete Filled Tubular Steel Columns (콘크리트충전 강관기둥의 내화특성에 관한 이론적 연구)

  • Chung, Kyung Soo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.649-658
    • /
    • 1997
  • When steel tube as a column is filled with concrete, it is common that the load-bearing capacities of CFST(Concrete Filled Steel Tube) column are increased substantially, And the CFST column can obtain a capacity of fire resistance without any additional detail on the surface of the steel tube for fire protection. In order to clarify the behavior of CFST column during fire occurrence, a theoretical study is performed, that is, a thermal analysis is used to find temperature gradient dependent on the time on the steel tube and the infilled concrete. N-M (axial force-moment) interaction curves are summarized under the consideration for time dependent variation. The material properties of concrete and steel in accordance with a temperature variation are referred to the existing general data. Thermal transient analyses are performed by finite element method through ANSYS and then these results are verified by comparing with the existing test results. On the basis of analytical results, load-carrying capacities (N-M interaction curves) are calculated by numerical analysis method.

  • PDF

Numerical Analysis of Warpage and Stress for 4-layer Stacked FBGA Package (4개의 칩이 적층된 FBGA 패키지의 휨 현상 및 응력 특성에 관한 연구)

  • Kim, Kyoung-Ho;Lee, Hyouk;Jeong, Jin-Wook;Kim, Ju-Hyung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.7-15
    • /
    • 2012
  • Semiconductor packages are increasingly moving toward miniaturization, lighter and multi-functions for mobile application, which requires highly integrated multi-stack package. To meet the industrial demand, the package and silicon chip become thinner, and ultra-thin packages will show serious reliability problems such as warpage, crack and other failures. These problems are mainly caused by the mismatch of various package materials and geometric dimensions. In this study we perform the numerical analysis of the warpage deformation and thermal stress of 4-layer stacked FBGA package after EMC molding and reflow process, respectively. After EMC molding and reflow process, the package exhibits the different warpage characteristics due to the temperature-dependent material properties. Key material properties which affect the warpage of package are investigated such as the elastic moduli and CTEs of EMC and PCB. It is found that CTE of EMC material is the dominant factor which controls the warpage. The results of RSM optimization of the material properties demonstrate that warpage can be reduced by $28{\mu}m$. As the silicon die becomes thinner, the maximum stress of each die is increased. In particular, the stress of the top die is substantially increased at the outer edge of the die. This stress concentration will lead to the failure of the package. Therefore, proper selection of package material and structural design are essential for the ultra-thin die packages.

Measurement of Thermal Expansion Coefficient of Package Material Using Strain Gages (스트레인 게이지를 이용한 패키지 재료의 열팽창계수 측정)

  • Yang, Hee-Gul;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.37-44
    • /
    • 2013
  • It is well known that thermal deformation of electronic packages with Pb-Sn solder and with lead-free solder is significantly affected by material properties consisting the package, as well as those of the solder itself. In this paper, the method for determining coefficient of thermal expansion(CTE) of new material is established by using temperature characteristic of strain gages, and the CTE of molding compound are obtained experimentally. The temperature-dependent CTE of molding compound for Pb-Sn solder and that for lead-free solder are obtained by using strain measurements with well known steel specimen and aluminium specimen as reference specimens, and the CTE's are also measured non-contactly by using moire interferometry. Those results are compared, and the agreement between the two types of strain gage experiment and the moire experiment show the strain gage method used in this paper to be reliable. In the case of the molding compound for Pb-Sn solder, the CTE is measured as approximately $15.8ppm/^{\circ}C$ regardless of the temperature. In the case for the lead-free solder, the CTE is measured as of approximately $9.9ppm/^{\circ}C$ below the temperature of $100^{\circ}C$, and then the CTE is increased sharply depending on the temperature, and reaches to $15.0ppm/^{\circ}C$ at $130^{\circ}C$.

The surface kinetic properties of $ZrO_2$ Thin Films in dry etching by Inductively Coupled Plasma

  • Yang-Xue, Yang-Xue;Kim, Hwan-Jun;Kim, Dong-Pyo;Um, Doo-Seung;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.105-105
    • /
    • 2009
  • $ZrO_2$ is one of the most attractive high dielectric constant (high-k) materials. As integrated circuit device dimensions continue to be scaled down, high-k materials have been studied more to resolve the problems for replacing the EY31conventional $SiO_2$. $ZrO_2$ has many favorable properties as a high dielectric constant (k= 20~25), wide band gap (5~7 eV) as well as a close thermal expansion coefficient with Si that results in good thermal stability of the $ZrO_2/Si$ structure. In order to get fine-line patterns, plasma etching has been studied more in the fabrication of ultra large-scale integrated circuits. The relation between the etch characteristics of high-k dielectric materials and plasma properties is required to be studied more to match standard processing procedure with low damaged removal process. Due to the easy control of ion energy and flux, low ownership and simple structure of the inductively coupled plasma (ICP), we chose it for high-density plasma in our study. And the $BCl_3$ included in the gas due to the effective extraction of oxygen in the form of $BCl_xO_y$ compound In this study, the surface kinetic properties of $ZrO_2$ thin film was investigated in function of Ch addition to $BCl_3/Ar$ gas mixture ratio, RF power and DC-bias power based on substrate temperature. The figure 1 showed the etch rate of $ZrO_2$ thin film as function of gas mixing ratio of $Cl_2/BCl_3/Ar$ dependent on temperature. The chemical state of film was investigated using x-ray photoelectron spectroscopy (XPS). The characteristics of the plasma were estimated using optical emission spectroscopy (OES). Auger electron spectroscopy (AES) was used for elemental analysis of etched surface.

  • PDF

Vibroacoustic analysis of stiffened functionally graded panels in thermal environments

  • Ashish K. Singh;Anwesha Pal;Shashi Kumar;Anuja Roy;Atanu Sahu
    • Structural Engineering and Mechanics
    • /
    • v.89 no.5
    • /
    • pp.437-452
    • /
    • 2024
  • Functionally graded materials (FGMs) have gained substantial attention from researchers due to their exceptional strength and thermal resistance. Their utilization in the aviation and automobile industries has significantly improved the efficiency of various structural components. Moreover, stiffened panels find wide applications in aerospace and automobile structures and these panels are frequently exposed to extreme environments. It is from this perspective that our research is focused on analysing the vibroacoustic response of stiffened functionally graded panels subjected to external dynamic excitations in a thermal environment. In the present research work, a finite element model is developed to conduct the dynamic analysis of functionally graded stiffened panels using the first-order shear deformation theory. Subsequently, a boundary element based model is also developed and coupled with the finite element model to investigate the sound radiation behaviour of those panels in a thermal environment. The material properties of FG stiffened panels are considered as temperature dependent, while the thermal environment is assumed to be acting as linearly varying through the panel's thickness. The present investigation aim to compare the vibroacoustic responses of different panels due to stiffener orientations, material compositions, power law indices and plate thicknesses at various temperatures. The research findings highlight the significant impact of addition of stiffeners, its orientation and material compositions on the sound radiation characteristics of these panels under thermal environments. The present numerical model can easily be employed for analysing the sound radiation behaviour of other types of flat or curved stiffened panels having arbitrary geometry and boundary conditions.

Experimental Study on Thermal Conductivity of Concrete (콘크리트의 열전도율에 관한 실험적 연구)

  • 김국한;전상은;방기성;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.305-313
    • /
    • 2001
  • Conductivity is an important thermal property which governs heat transfer in a solid medium. Generally, the determination of conductivity in concrete is very difficult, because concrete is a heterogeneous material composed of cement, water, aggregate, et cetera and time dependent material of which properties change with curing age. In this study, influencing factors on thermal conductivity of concrete are quantitatively investigated by QTM-D3, a conductivity tester developed in Japan. Then, a prediction equation of thermal conductivity of concrete is suggested from the regression analysis of test results. To consider the factors influencing thermal conductivity of concrete, mortar, and cement paste, seven testing variables (age, amount of cement, types of admixtures, amount of coarse aggregate, fine aggregate ratio, temperature, and humidity condition) of the specimens are used. According to the experimental results, the amount of coarse aggregate and humidity condition of specimen are the main factors affecting the conductivity of concrete. Meanwhile, the conductivity of mortar and cement paste is strongly affected by the amount of cement and types of admixtures. However, the curing age has minor effect on the conductivity variation. Finally, the prediction formula of concrete conductivity as a function of aggregate amount, fine aggregate ratio, specimen temperature, and humidity condition is developed.

A Study on the Optical and Electrical Properties of Ga-doped ZnO Films for Opto-electronic Devices (광전소자 응용을 위한 Ga가 첨가된 ZnO 박막의 광학적 및 전기적 특성 연구)

  • Gil, Byung-Woo;Lee, Seong-Eui;Lee, Hee-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.303-308
    • /
    • 2011
  • The Gallium-doped ZnO(GZO) film deposited at a temperature of $200^{\circ}C$ and a pressure of 10 mtorr has an optical transmittance of 89.0% and a resistivity of $2.0\;m{\Omega}{\cdot}cm$ because of its high crystallinity. Effect of $Al_2O_3$ oxide buffer layers on the optical and electrical properties of sputtered ZnO films were intensively investigated for developing the electrodes of opto-electronic devices which demanded high optical transmittance and low resistivity. The use of $Al_2O_3$ buffer layer could increase optical transmittance of GZO film to 90.7% at a wavelength of 550 nm by controlling optical spectrum. Resistivity of deposited GZO films were much dependent on the deposition condition of $O_2/(Ar+O_2)$ flow rate ratio during the buffer layer deposition. It is considered that the $Al_2O_3$ buffer layer could increase the carrier concentration of the GZO films by doping effect of diffused Al atoms through the rough interface.

Application of PCM Technology to Concrete II : Effects of SSMA(Sulfonated Styrene-Maleic Anhydride) on the Properties of the 1-Dodecanol Micro-Capsule (PCM 기술의 콘크리트 적용 II : 계면중합법에 의한 1-도데카놀 마이크로 캡슐에 있어서 계면활성제로 사용된 SSMA의 표면활성도가 마이크로 캡슐의 특성에 미치는 영향)

  • Shin, Se-Soon;Jung, Jae-Yun;Lim, Myung-Kwan;Choi, Dong-Uk;Kim, Young-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • Thermal storage technology used for indoor heating and cooling to maintain a constant temperature for a long period of time has an advantage of raising energy use efficiency. This, the phase changing material, which utilizes heat storage properties of the substances, capsulizes substances that melt at a constant temperature. This is applied to construction materials to block or save energy due to heat storage and heat protection during the process in which substances melt or freeze according to the indoor or outdoor temperature. The micro-encapsulation method is used to create thermal storage from phase changing material. This method can be broadly classified in 3 ways: chemical method, physical and chemical method and physical and mechanical method. In the physical and chemical method, a wet process using the micro-encapsulation process utilized. This process emulsifies the core material in a solvent then coats the monomer polymer on the wall of the emulsion to harden it. In this process, a surfactant is utilized to enhance the performance of the emulsion of the core material and the coating of the wall monomer. The performance of the micro-encapsulation, especially the coating thickness of the wall material and the uniformity of the coating, is largely dependent on the characteristics of the surfactant. This research compares the performance of the micro-capsules and heat storage for product according to molecular mass and concentration of the surfactant, SSMA (sulfonated styrene-maleic anhydride), when it comes to micro-encapsulation through interfacial polymerization, in which Dodecan-1 is transformed to melamin resin, a heat storage material using phase changing properties. In addition, the thickness of the micro-encapsulation wall material and residual melamine were reduced by adjusting the concentration of melamin resin microcapsules.