• Title/Summary/Keyword: temperature coefficient resistance

Search Result 538, Processing Time 0.027 seconds

The Formation Technique of Thin Film Heaters for Heat Transfer Components (열교환 부품용 발열체 형성기술)

  • 조남인;김민철
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.31-35
    • /
    • 2003
  • We present a formation technique of thin film heater for heat transfer components. Thin film structures of Cr-Si have been prepared on top of alumina substrates by magnetron sputtering. More samples of Mo thin films were prepared on silicon oxide and silicon nitride substrates by electron beam evaporation technology. The electrical properties of the thin film structures were measured up to the temperature of $500^{\circ}C$. The thickness of the thin films was ranged to about 1 um, and a post annealing up to $900^{\circ}C$ was carried out to achieve more reliable film structures. In measurements of temperature coefficient of resistance (TCR), chrome-rich films show the metallic properties; whereas silicon-rich films do the semiconductor properties. Optimal composition between Cr and Si was obtained as 1 : 2, and there is 20% change or less of surface resistance from room temperature to $500^{\circ}C$. Scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) were used for the material analysis of the thin films.

  • PDF

The study on electrical properties of the NiCr thin film resistor (NiCr 박막저항의 전기적 특성 연구)

  • 류제천;김동진;김용일;강전홍;김한준;유광민
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.275-278
    • /
    • 2000
  • We were fabricated of NiCr thin film resistors(TFR) on A1$_2$O$_3$(99.5%) substrates by dc magnetic sputtering system. The characteristics of electrical resistance (Sheet resistance & Temperature-Coefficient of the resistance-value:TCR) by annealing condition and reactive gas on the resistors were studied.

  • PDF

The study on formation of platinum thin films for RTD temperature sensor (측온저항체 온도센서용 백금박막의 형성에 관한 연구)

  • 정귀상;노상수
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.911-917
    • /
    • 1996
  • Platinum thin films were deposited on Si-wafer by DC rnagnetron sputtering for RTD (resistance thermometer devices). We investigated the physical and electrical characteristics of these films under various conditions, the input power, working vacuum, temperature of substrate and also after annealing these films. The deposition rate was increased with increasing the input power but decreased with increasing Ar gas pressure. The resistivity and sheet resistivity were decreased with increasing the temperature of substrate and the annealing time at 1000.deg. C. At substrate temperature of >$300^{\circ}C$, input power of 7 w/cm$^{2}$, working vacuum of 5 mtorr and annealing conditions of 1000.deg. C and 240 min, we obtained 10.65.mu..ohm..cm, resistivity of Pt thin films and 3800-3900 ppm/.deg. C, TCR(temperature coefficient of resistance). These values are close to the bulk value. These results indicate that the Pt thin films deposited by DC magnetron sputtering have potentiality for the development of Pt RTD temperature sensor.

  • PDF

The Study on Characteristics of Platinum Thin Film RTD Temperature Sensors with Annealing Conditions (열처리 조건에 따른 백금박막 측온저항체 온도센서의 특성에 관한 연구)

  • Chung, Gwiy-Sang;Noh, Sang-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.81-86
    • /
    • 1997
  • Platinum thin films were deposited on $SiO_{2}/Si$ and $Al_{2}O_{3}$ substrates by DC magnetron sputtering for RTD (resistance thermometer devices) temperature sensors. The resistivity and sheet resistivity of these films were decreased with increasing the annealing temperature and time. We made Pt resistance pattern on $Al_{2}O_{3}$ substrate by lift-off method and fabricated Pt-RTD temperature sensors by using W-wire, silver epoxy and SOG(spin-on-glass). In the temperature range of $25{\sim}400^{\circ}C$, we investigated TCR(temperature coefficient of resistance) and resistance ratio of Pt-RTD temperature sensors. TCR values were increased with increasing the annealing temperature, time and the thickness of Pt thin films. Resistance values were varied linearly within the range of measurement temperature. At annealing temperature of $1000^{\circ}C$, time of 240min and thin film thickness of $1{\mu}m$, we obtained TCR value of $3825ppm/^{\circ}C$ close to the Pt bulk value.

  • PDF

Stabilization of Thermo Electromotive Force of Power Type Shunt Resistor for Mass Storage Secondary Battery Management System (대용량 이차전지 관리 시스템용 전력형 션트저항의 열기전력 안정화)

  • Kim, Eun Min;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.376-380
    • /
    • 2017
  • In this paper, we prepared a metal alloy resistor with stable thermal electro motive force (thermal EMF) as well as a low temperature coefficient of resistance (TCR) by adjusting the manganese proportion from 3 to 12 wt% in the Cu-Mn-Ni alloy. Composition of the fabricated metal alloy was investigated using energy dispersive X-ray (EDX) analysis. The TCR of each sample was measured as 44.56, 40.54, 35.60, and 31.56 ppm for Cu-3Mn-2Ni, Cu-5Mn-2Ni, Cu-10Mn-2Ni, and Cu-12Mn-2Ni, respectively. All the resistor samples were available for the F grade (${\pm}1%$ of the allowable error of resistance) high-precision resistor. All the samples satisfied the baseline of high thermal EMF (under 3 mV at $60^{\circ}C$); however, Cu-3Mn-2Ni and Cu-5Mn-2Ni satisfied the baseline of low thermal EMF (under 0.3 mV at $25^{\circ}C$). We were thus able to design and fabricate the metal alloy resistor of Cu-3Mn-2Ni and Cu-5Mn-2Ni to have low TCR and stable thermal EMF at the same time.

Effect of RF Sputtering Conditions on Properties of Thin Film Resistor for Microwave Device (초고주파용 박막저항의 특성에 미치는 RF 스파터링 조건의 영향)

  • Ryu, Sung-Rok;Koo, Bon-Keup;Kang, Beong-Don;Ryu, Jei-Chun;Kim, Dong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.913-917
    • /
    • 2003
  • In the electronic components and devices fabrication, thin film resistors with low TCR(temperature coefficient of resistance) and high precision have been used over 3 GHz microwave in recent years. Ni-Cr alloys thin films resistors is one of the most commonly used resistive materials because it has low TCR and highly stable resistance. In this work, we fabricated thin film resistors using Evanohm alloys target(72Ni-20Cr-3Al-4Mn-Si) of s-type with excellent resistors properties by RF-sputtering. Also we reported best deposited conditions of thin film resistors for microwave to observe microstructure and electronic properties of thin film according to deposited conditions(between target and substrate, power supply)

  • PDF

Experimental studies on the material properties of high-strength bolt connection at elevated temperatures

  • Li, Guo-Qiang;Yin, Ying-Zhi;Li, Ming-Fei
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.247-258
    • /
    • 2002
  • The high-temperature material properties of steel are very important to the fire resistance analysis of high-strength bolt connections. This paper reports on the results of the experimental studies on the high-temperature properties of 20 MnTiB steel which is widely used in high-strength bolts, and the friction coefficient of 16Mn steel plates at elevated temperature which is a necessary parameter for bolted frictional connection analysis. The test data includes yield strength, limit strength, modulus of elasticity, elongation and expansion coefficient of 20MnTiB steel at elevated temperature, and the friction coefficients between two 16Mn steel plates under elevated temperatures and after cooling. Based on the data from the tests, the mathematical models for predicting the mechanical properties of 20MnTiB steel and friction coefficients of 16Mn steel plates have been established.

Investigation on the phase transition of $Ni_2$MnGa alloy by using impedance spectroscopy

  • Park, S.Y.;Cho, K.H.;Lee, Y.P.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.1
    • /
    • pp.13-17
    • /
    • 2003
  • The influence of structural transition on the resistance and impedance behavior of Ni$_2$MnGa alloy was investigated. The temperature-dependent resistance and impedance were measured in a temperature range of 4 - 350 K and 185 - 300 K, respectively. The dependence of temperature coefficient of resistivity on temperature shows a kink at 220 K, which is related to the structural transition. The change in dominant scattering mechanism results in the observed kink. Significant increases were also observed around the transition temperature for both real and imaginary parts of impedance. It is thought that this phenomenon originates from disappearance of the martensite twin boundaries during the structural transformation.

  • PDF

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

Fabrication of micro heaters with uniform-temperature area on poly 3C-SiC membrane and its characteristics (다결정 3C-SiC 멤브레인 위에 균일한 온도분포를 갖는 마이크로 히터의 제작과 그 특성)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.349-352
    • /
    • 2009
  • This paper describes the fabrication and characteristics of micro heaters built on AlN($0.1{\mu}m$)/3C-SiC($1{\mu}m$) suspended membranes by surface micromachining technology. In this work, 3C-SiC and AlN films are used for high temperature environments. Pt thin film was used as micro heaters and temperature sensor materials. The resistance of temperature sensor and the power consumption of micro heaters were measured and calculated. The heater is designed for operating temperature up to about $800^{\circ}C$ and can be operated at about $500^{\circ}C$ with a power of 312 mW. The thermal coefficient of the resistance(TCR) of fabricated Pt resistance of temperature detector(RTD)'s is 3174.64 ppm/$^{\circ}C$. A thermal distribution measured by IR thermovision is uniform on the membrane surface.