• Title/Summary/Keyword: temperature calibration

Search Result 516, Processing Time 0.029 seconds

A Study for Measurements of In-Cylinder Residual Gas Fraction using Fast Response FID in an SI Engine (스파크점화기관에서 고속응답 FID를 이용한 실린더내 잔류가스량 측정에 관한 연구)

  • 송해박;조한승;이종화;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.80-89
    • /
    • 1998
  • The residual gas in an spark-ignition engine is one of important factors on emissions and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and these are deeply related with combustion stability especially at idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. In the present study, the quantitative measurement technique of residual gas fraction was studied by using Fast Response Flame Ionization Detector(FRFID). The measuring technique and model for estimation of residual gas fraction were reported in this paper. By the assuming that the raw signal from FRFID saturates with the same slope for firing and misfiring cycle, in-cylinder hydrocarbon(HC) concentration can be estimated. Residual gas fraction can be obtained from the in-cylinder HC concentration measured at firing and motoring condition. The developed measurement and calibration procedure were applied to the limited engine operating and design condition such as intake manifold pressure and valve overlap. The results show relevant trends by comparing those from previous studies.

  • PDF

A Study on the Dose Analysis of Pottery Shards by Thermoluminescence Dating Method (TL 연대측정법을 이용한 토기 시편의 선량 분석)

  • Shin, Hyun-Sang
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.558-564
    • /
    • 1999
  • A method for measuring archaeological dose of Packjae pottery shards using thermoluminescence dosimetry(TLD) has been studied. TL measurement has been achieved using quartz crystals in the size range of 90 to $125{\mu}m$ diameter extracted from the pottery shards. The stable temperature region of the TL glow curve which is devoid of anomalous fading components was identified by the plateau test and found to exist from 265 to $300^{\circ}C$. The archaeological dose of the pottery shards was estimated to be 7.43 Gy using the dose calibration curves obtained from sequential irradiation of $^{137}Cs$ gamma source to the samples and TL measurement of natural samples.

  • PDF

Microwave Moisture Measurement of Fine Aggregate in RMC Industry (마이크로웨이브를 이용한 콘크리트 잔골재 표면수율 측정 자동화)

  • Choi, Young-Choel;Lee, Bong-Chun;Moon, Gyu-Don;Son, Young-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.63-69
    • /
    • 2012
  • Ready-mixed concrete(RMC) has been a major construction materials for infrastructures. However, RMC with poor quality is reported to be social issue since it directly user's safety and convenience. Because the properties of concrete as a construction material are greatly influenced by the variation of water content, to control water accurately is the most efficient method for the quality control in RMC industry. In this study, the automatic measurement technology of fine aggregate was developed by using the microwave moisture measurement. For the various conditions of fine aggregate such as moisture, temperature and pressure, the calibration curve of moisture measurement was obtained by using oven-dry method. From the infield and outfield test, it can be obtained that the accuracy of microwave moisture measurement is very high and the automatic system of microwave moisture measurement is very convenient and useful for quality control in RMC Industry.

Determination of Sulfur-Containing Odorants in Natural Gas by Gas Chromatography/Flame Photometric Detection (GC/FPD에 의한 천연가스 중 황 함유 부취제의 정량)

  • Choi, Yong-Wook;Kim, Jong-Hun;Choe, Kun-Hyung;Shin, Sung-Sik
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.349-359
    • /
    • 1994
  • A gas chromatographic method for analyzing the gas odorants concentration in natural gas was studied. Eight odorants involving TBM and THT were completely separated by using OV-10 column. The optimization of several interrelated key parameters affecting the response of FPD such as hydrogen flow rate, air flow rate and detector temperature were accomplished. A permeation device was used to obtain calibration curves of TBM and THT. This analytical method has applied to measure TBM and THT used as a natural gas odorant blend in natural gas pipeline. In order to elucidate the relationship between odor level and odorant level feasibility test of fragrance meter was demonstrated.

  • PDF

Development of Scientific Payloads for Korea Sounding Rocket-III (3단형 과학로켓용 과학탑재체 개발)

  • Hwang, Seung Hyeon;Kim, Jun;Lee, Su Jin;Jeon, Yeong Du;Park, Jeong Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.80-88
    • /
    • 2003
  • This paper describes the development of an ozone detector and an electron probe as parts of scientific payloads for sounding rockets such as the KSR-III. Each detector consists of sensor parts and electronic parts. We successfully carried out the calibration tests with developed ozone detector and the space plasma simulation chamber tests with electron detector. These payloads could be onboard the KSR-III and with measured data, it is expected and temperature profile over the Korean Peninsular.

Development of the Insufflator for Endoscopic Surgery using the Fluidic System in Printed Circuit Board (유공압 부품이 내장된 인쇄회로기판을 활용한 내시경 수술용 기복기의 개발)

  • Lee, Hee-Nam;Kim, In-Young;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.32-36
    • /
    • 2011
  • The insufflators in endoscopic surgery supply carbon dioxide to make the air-filled cavity in the abdomen. It contains many kinds of pneumatic and electronic parts and they are connected with the air tubes and electrical wires. The printed circuit boards (PCB) perform wiring, holding and cooling tasks in electronic systems. In this study, the PCB is used as the air channel for insufflators to decrease the cost, volume, and the malfunction according to aging of the device. Three layers of PCB made of FR4 are combined with prepreg as adhesive which has the internal airway channel according to the design. By mounting the pressure sensors and valves, the PCB based fluidic system is implemented. After calibration of flow sensor, the flow rate of the gas also can be measured. The climate test, temperature test, and biocompatibility test showed this idea can be used in insufflators for laparoscopic surgery.

Application of KOMPSAT/OSMI Data for Fisheries Oceanography in the East China Sea

  • Suh Young-Sang;Jang Lee-Hyun;Lee Na-Kyung;Kim Yong-Seung;Lee Sun-Gu;Yoo Hong-Rhyong
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.557-561
    • /
    • 2004
  • A comparison was made between chlorophyll a from OSMI and SeaWiFS determined with the standard method during the NFRDI's research cruises. The simple algorithm for calibrating and validating of OSMI chlorophyll a as level 2 data in the East China Sea in specially winter season was made by relationship between the estimated chlorophyll a and the measured chlorophyll a in the field. We compared the distributions of OSMI chlorophyll a, sea surface temperature and zooplankton biomass, catch amounts of the Pacific mackerel in the East China Sea.

  • PDF

A Precise Location Tracking System with Smart Context-Awareness Based-on Doppler Radar Sensors (스마트한 상황인지를 적용한 도플러 레이더 센서 기반의 정밀 위치추정 시스템)

  • Moon, Seung-Jin;Kim, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1159-1166
    • /
    • 2010
  • Today, detecting the location of moving object has been traced as various methods in our world. In this paper, we preset the system to improve the estimation accuracy utilizing detail localization using radar sensor based on WSN and situational awareness for a calibration (context aware) database, Rail concept. A variety of existing location tracking method has a problem with receiving of data and accuracy as tracking methodology, and since these located data are the only data to be collected for location tracing, the context aware or monitering as the surrounding environment is limited. So, in this paper, we enhanced the distance aware accuracy using radar sensor utilizing the Doppler effect among the distance measuring method, estimated the location using the Triangulation algorithm. Also, since we composed the environment data(temperature, illuminancem, humidity, noise) to entry of the database, it can be utilized in location-based service according to the later action information inference and positive context decision. In order to verify the validity of the suggested method, we give a few random situation and built test bed of designed node, and over the various test we proved the utilizing the context information through route tracking of moving and data processing.

Development of accuracy enhancement system for boron meters using multisensitive detector for reactor safety

  • Sung, Si Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.538-543
    • /
    • 2020
  • Boric acid is used as a coolant for pressurized-water reactors, and the degree of burnup is controlled by the concentration of boric acid. Therefore, accurate measurement of the concentration of boric acid is an important factor in reactor safety. An improved system was proposed for the accurate determination of boron concentration. A new boron-concentration measurement technique, called multisensitive detection, was developed to improve the measurement accuracy of boron meters. In previous studies, laboratory-scale experiments were performed based on different sensitivity detectors, confirming a 65% better accuracy than conventional single-detector boron meters. Based on these experimental results, an experimental system simulating the coolant-circulation environment in the reactor was constructed; accuracy analysis of the boron meter with a multisensitivity detector was performed at the actual coolant pressure and temperature. In this study, the boron concentration conversion equation was derived from the calibration test, and the accuracy of the boron concentration conversion equation was examined through a repeatability test. Through the experiment, it was confirmed that the accuracy was up to 87.5% higher than the conventional single-detector boron meter.

Determination of Palladium in Water Samples Using Cloud Point Extraction Coupled with Laser Thermal Lens Spectrometry

  • Han, Quan;Huo, Yanyan;Yang, Na;Yang, Xiaohui;Zhai, Yunhui;Zhang, Qianyun
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.407-412
    • /
    • 2015
  • A preconcentration procedure for determination of palladium by laser thermal lens spectrometry (TLS) is proposed. It is based on cloud point extraction of palladium(II) ions as 2-(3,5-dichloro-2-pyridylazo)-5-dimethylaminoaniline (3,5-diCl-PADMA) complexes using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The effects of various experimental conditions such as pH, concentration of ligand and surfactant, equilibration temperature and time on cloud point extraction were studied. Under the optimized conditions, the calibration graph was linear in the range of 0.15~6 ng mL−1, and the detection limit was 0.04 ng mL−1 with an enrichment factor of 22. The sensitivity was enhanced by 846 times when compared with the conventional spectrophotometric method. The recovery of palladium was in the range of 96.6%~104.0%. The proposed method was applied to the determination of palladium in water samples.