• Title/Summary/Keyword: temperature calibration

Search Result 516, Processing Time 0.027 seconds

Intralaboratory Comparison of the Realization of the Triple-point Temperature of Mercury (수은 삼중점 온도 실현의 교정 기관 내 비교)

  • Inseok, Yang;Young Hee, Lee
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.448-454
    • /
    • 2022
  • An intralaboratory comparison of the realization of the triple-point temperature of mercury, which is defined as -38.8344℃ on the international temperature scale of 1990 (ITS-90), was conducted at the Korea Research Institute of Standards and Science (KRISS), the national metrology institute of Korea. To this end, four triple-point-of-mercury cells were compared using the resistance ratio measurement of a standard platinum resistance thermometer to validate the calibration results obtained using the triple-point-of-mercury cells at KRISS. The triple-point temperatures of all the four cells, one of which is designated as the national standard cell, were within 0.3 mK of the national standard. Based on 13 experiments on the four triple-point-of-mercury cells, the uncertainty in the comparison of the triple-point-of-mercury cells was 0.08 mK, and the uncertainty in the realization of the triple-point temperature of mercury was 0.19 mK. The results of the intralaboratory comparison validated that utilizing any of the four triple-point-of-mercury cells would result in the realization of a temperature within 0.3 mK of the average value determined by two key international comparisons for the realization of -38.3844℃ following the ITS-90.

SOME CHARACTERISTICS OF FIELD STARS

  • Lee, See-Woo;Choe, Seung-Urn
    • Journal of The Korean Astronomical Society
    • /
    • v.21 no.1
    • /
    • pp.1-36
    • /
    • 1988
  • The temperature calibration of stars by photometric parameters and spectral type is discussed, using the catalogue data of Cayrel de Strobel et al. (1985) and Morel et al. (1976). The H-R diagrams and the mass-luminosity relation of stars in this catalogue are presented in the [log(L/M)-log $T_e$]-and [$M_{bol}$-log(L/M)]-planes, respectively, discussing the age of main sequence (MS) stars and giant stars. The age-metallicity relation of the nearby stars suggests the initial rapid enrichment of metal abundance.

  • PDF

Construction of HTS Multi-channel SQUID System

  • Lee, S.M.;Park, W.K.;Lee, H.J.;Moon, S.H.;Lim, S.H.;Kim, D.Y.;Oh, B.
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.47-50
    • /
    • 2000
  • We have constructed a multi-channel SQUID magnetometer system. The system is designed to operate normally with 10 high temperature direct coupled SQUIDs. The main features of the system include a remote control by serial communication, low noise with wide bandwidth and high slew rate by several MHz modulation, signal conditioning and calibration by digital signal processing.

  • PDF

30 GHz 세라믹 패키지의 제작 및 측정

  • 서재옥;김진양;박성대;이우성;강남기;이해영
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.147-151
    • /
    • 2002
  • We fabricated and characterized a millimeter-wave ceramic package in a frequency range from 6 to 40㎓ using the LTCC(Low Temperature Cofired Ceramic) Technology and TRL(Thru-Reflect-Line) calibration method. From these measurement results, the fabricated feed-through structure achieved 0.5 dB, 14 dB of the insertion loss and the return loss at 30 GHz respectively. This ceramic package will be useful for MMIC(Monolithic Microwave Integrated Circuit) modules.

  • PDF

Sensitivity Enhancement of a Hot-Wire Anemometer by Changing Overheat Ratio with Velocity (유속에 따른 열선의 과열비 조정을 통한 열선유속계의 감도향상에 관한 연구)

  • ;;Kauh, S. K.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2678-2689
    • /
    • 1995
  • In this study, a new hot-wire anemometer which has greater sensitivity than that of a constant temperature anemometer (CTA) was proposed. In contrast to CTA, the wire working resistance of the new anemometer increases with flow velocity, that is, the operating mode of the wire becomes variable temperature. The variable temperature anemometer(VTA) was made by substituting a voltage controlled variable resistor such as photoconductive cell or transistor for one of the resistors in the bridge. By positively feeding back the bridge top signal to the input side of these electronic components, the wire overheat ratio could be increased with velocity automatically. Static response analyses of the VTA, constant voltage anemometer (CVA) and CTA were made in detail and calibration experiments were performed to validate the proposed operating principle. The wire operating resistance of the CVA decreases with velocity and this leads to lower sensitivity than that of a CTA. But the sensitivity of the newly proposed VTA is superior to that of a CTA, since the wire overheat ratio increases with velocity. Consequently, it is found that the major factor that is responsible for large sensitivity of a VTA is not the working resistance itself but the change of the wire working resistance with velocity.

An Experimental Study on the design of the thermister thermometer (전기온도계 제작에 관한 실험적 연구)

  • Yun, Dork-Ro;Kim, Ik-Su
    • Journal of Preventive Medicine and Public Health
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 1973
  • The study in the fild of medical instrument has been out of the interest by any of the life scientist in Korea. Especially, the recent developments in the medical electromics are remarkable one. Authors planned this study to ascertain the possibility of setting up the thermister thermometer with available accessories of demestic prouducts including some specific foreign assembly parts. By proper use of the thermister as one of the wheatstone bridge, we could detect tile resistance variations due to the environmental temperature variace. The intensive care for the bridge circuit and compensation scheme was required. The calibration procedure adopted here makes it possible to read the current as the temperature. The temperature range was determined by the examination and construction of the graph of the resistance-temperature variation. The determination of electric current, available ambient-temperature, the reduction of excessive current and self-heating of the thermister were made. Renovation in response-velocity was under taken too. This electronic thermometer was designed and assembled by the circuitry developed in accordance with the maximum availability of domestic products with some foreign-made parts. The result of our experiment showed very stable function and proved to be the most promissing item in the actual application as long as the thermistor thermister is concerned.

  • PDF

Fabrication and Performance Investigation of Surface Temperature Sensor Using Fluorescent Nanoporous Thin Film I (형광 나노 포러스 박막을 이용한 표면 온도 센서의 제작 및 성능 연구 I)

  • Kim, Hyun Jung;Yoo, Jaisuk;Park, Jinil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.668-673
    • /
    • 2013
  • In this study, specimens with nano-sized porous thin films were manufactured by injecting fluorescence solution into the pores. We intended to find out the difference of the fluorescence intensity in each region of the specimen through an experimental apparatus that makes a temperature field. Before conducting experiments, the optimized manufacturing conditions were determined by analysis of all parameters that influence the emission intensity, and the experiments were carried out with the specimens produced in the optimized conditions. Then, the calibration curves of the fluorescence intensity versus temperature were performed by taking the intensity distributions from the specimen in various temperature fields. The surfaces of specimens were coated with Rhodamine-B (Rh-B) fluorescent dye and measured based on the fluorescence intensity. Silica (SiO2) nanoporous structure with 1-um thickness was constructed on a cover glass, and fluorescence dye was absorbed into these porous thin films.

Application of an Optical Current Transformer For Measuring High Current

  • Kim, Yeong-Min;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.11
    • /
    • pp.9-16
    • /
    • 2010
  • This paper examines the temperature characteristics of an Optical CT (optical current transformer) using the Faraday effect for measuring high current in a super high voltage-power apparatus. It is performed as follows by the sensor for embodying Faraday effect. $\cdot$ A single-mode optical fiber capable of maintaining a polarization state is used. $\cdot$ A light source is applied at 1310[nm] to a Laser Diode. $\cdot$ The Linear of Faraday effect to a large current is evaluated and $\cdot$ A possible application using an Optical CT was shown. An Influence of Faraday effect to the surrounding temperature measured -40~50[$^{\circ}C$], and the characteristic of the current sensitivity was reported. An application using the results of the temperature compensation system was used in order to compensate for surrounding temperatures. A possibility of applying Optical CT for electric power apparatus was advanced further. We were able to confirm that this temperature calibration method can minimize the fluctuation of the output signal depending on the temperature conditions.

Exploration of temperature effect on videogrammetric technique for displacement monitoring

  • Zhou, Hua-Fei;Lu, Lin-Jun;Li, Zhao-Yi;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.135-153
    • /
    • 2020
  • There has been a sustained interest towards the non-contact structural displacement measurement by means of videogrammetric technique. On the way forward, one of the major concerns is the spurious image drift induced by temperature variation. This study therefore carries out an investigation into the temperature effect of videogrammetric technique, focusing on the exploration of the mechanism behind the temperature effect and the elimination of the temperature-caused measurement error. 2D videogrammetric measurement tests under monotonic or cyclic temperature variation are first performed. Features of measurement error and the casual relationship between temperature variation and measurement error are then studied. The variation of the temperature of digital camera is identified as the main cause of measurement error. An excellent linear relationship between them is revealed. After that, camera parameters are extracted from the mapping between world coordinates and pixels coordinates of the calibration targets. The coordinates of principle point and focal lengths show variations well correlated with temperature variation. The measurement error is thought to be an outcome mainly attributed to the variation of the coordinates of principle point. An approach for eliminating temperature-caused measurement error is finally proposed. Correlation models between camera parameters and temperature are formulated. Thereby, camera parameters under different temperature conditions can be predicted and the camera projective matrix can be updated accordingly. By reconstructing the world coordinates with the updated camera projective matrix, the temperature-caused measurement error is eliminated. A satisfactory performance has been achieved by the proposed approach in eliminating the temperature-caused measurement error.

An Accurate Current Reference using Temperature and Process Compensation Current Mirror (온도 및 공정 보상 전류 미러를 이용한 정밀한 전류 레퍼런스)

  • Yang, Byung-Do
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.79-85
    • /
    • 2009
  • In this paper, an accurate current reference using temperature and process compensation current mirror (TPC-CM) is proposed. The temperature independent reference current is generated by summing a proportional to absolute temperature (PTAT) current and a complementary to absolute temperature (CTAT) current. However, the temperature coefficient and magnitude of the reference current are influenced by the process variation. To calibrate the process variation, the proposed TPC-CM uses two binary weighted current mirrors which control the temperature coefficient and magnitude of the reference current. After the PTAT and CTAT current is measured, the switch codes of the TPC-CM is fixed in order that the magnitude of reference current is independent to temperature. And, the codes are stored in the non-volatile memory. In the simulation, the effect of the process variation is reduced to 0.52% from 19.7% after the calibration using a TPC-CM in chip-by-chip. A current reference chip is fabricated with a 3.3V 0.35um CMOS process. The measured calibrated reference current has 0.42% variation for $20^{\circ}$C${\sim}$100$^{\circ}$C.