• Title/Summary/Keyword: temperature and relative humidity

Search Result 1,757, Processing Time 0.037 seconds

Development of Fuzzy Controller for Air Conditioning of Grain Bin (곡물빈용 공기조화장치의 퍼지제어기 개발)

  • 최영수;문대식;정종훈
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.137-143
    • /
    • 2002
  • Temperature and humidity are the most important factors and should be effectively controlled for the cold storage of graius. Fuzzy logic can be easily implemented to the MIMO(Multi-Input Multi-Output) control systems. For the cold storage in grain bin, fuzzy logic was applied to an air conditioning system. The capacities of the grain bin and the air conditioner are 80 tons and 30㎾, respectively. Also, the target values of temperature and relative humidity in outlet duct of the air conditioner were 8$\^{C}$ and 75%, respectively. In order to control temperature and relative humidity of air, a damper in inlet duct was manipulated for temperature control and a heater was used for humidity control. Temperature deviation and change of temperature deviation were used as input parameters for the fuzzy system. Humidity was only considered as a load. The experimental results showed that the controlled temperature of exhausted air was maintained at 8$\pm$2$\^{C}$. Relative humidity of the air was also controlled at the target relative humidity of 50∼80%.

Investigation of Internal Temperature and Relative Humidity of Concrete Immediately After Mix and Placement (양생직후 초기재령의 콘크리트 내부 온도와 상대습도의 측정 및 분석)

  • Park, Cheol-Woo;Park, Young-Hoon;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1065-1068
    • /
    • 2008
  • Concrete is still one most common construction materials even in railway structures. As structures become massive and mega-sized, the importance of early age concrete quality control becomes more significant. Among various factors, relative humidity and temperature are the primary factors governing the early age quality. Temperature raise due to cement hydration causes stress, which can develop to cracking with internal and/or external restraints. Exposure conditions including ambient temperature, humidity and wind also significantly affect the cracking behavior of early age concrete. Among many of studies on the early age concrete behavior, investigation on the variation of temperature and relative humidity internal of concrete is not common. That is in part because the difficulties in measuring the relative humidity and temperature inside the concrete. This study used a digital sensor with an appropriate logger to measure internal temperature and relative humidity. This direct measuring method is expected to provide more reliable and comprehensive data acquisition on the early age behavior of concrete.

  • PDF

Analysis for Temperature and Relative Humidity of Showcase in Exhibition Hall Operated Intermittent Air Conditioning (간헐공조 전시관내 유물 진열장의 온·습도 환경 분석)

  • Lee, Sun Myung;Lim, Bo A;Kim, Seojin
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.311-320
    • /
    • 2013
  • The showcase has insufficient temperature control, but it has excellent humidity control. The annual average temperature and relative humidity inside the showcase was $18.8^{\circ}C$ and 60.3%, respectively, and the showcase showed lower temperature and higher humidity than the exhibition room. The temperature inside the showcase appeared with high variation according to the seasons, while relative humidity was ranging from 59% to 61% regardless of the seasons. The showcase showed high temperature and humidity likewise the exhibition room in summer. In addition, lowering of temperature was elevated relative humidity according to the operation of air conditioner in summer. A moisture problem occurred because the temperature and humidity differences between the exhibition room and showcase were large according to the operation of air conditioner in winter. PI for temperature and relative humidity inside the showcase is 18.0%, and it means conservation environment for exhibition is unsuitable. In particular, continuous management of temperature and humidity inside the showcase is required because PI in the summer and winter is less than 1.0%.

Studies on the cigarette hardness(II) The Influence of relative humidity, temperature and net weight on cigarette hardness (담배 경도에 관한 연구(II) 상대습도, 온도 및 진충량이 담배의 경도에 미치는 영향)

  • 정한주;민영근;김병구;김기환
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 1991
  • This experiment carried out to review influence of relative humidity, temperature and net weight on cigarette hardness for the uniformal control of cigarette quality. Obtained results are as follows: 1. The difference in the cigarette physical properties of constant hardness control is considerably lower than that of constant net weight control. 2. Contribution rate for cigarette hardness is relative humidity > net weight > temperature. 3. The multiple regression equation of cigarette hardness related with relative humidity, temperature and net weight is calculated as follows.

  • PDF

Effects of Curing Temperature on Autogenous Shrinkage, Relative Humidity, Pore Structure of Cement Pastes

  • Park Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.853-856
    • /
    • 2005
  • A low water/cement ratio leads to autogenous shrinkage of cement paste at an early age. This autogenous shrinkage is related to the change of relative humidity in the pore structure that is formed during the hydration process. The relationship between autogenous shrinkage and relative humidity change are relatively well defined today, but the effects of temperature on autogenous shrinkage, relative humidity, and pore structures have been studied less systematically. This study focused on correlating alterations of these properties of cement paste hydrated at constant temperatures of 20, 40, and $60^{\circ}C$. The test results clearly indicate that increasing curing temperature resulted in increased porosity, particularly for pores between 5 to 50 nm as measured by MIP, and increased autogenous shrinkages, as a consequence of a reduction of relative humidity at early ages.

The Effects of Micro-Environmental Factors on the House Dust Mite

  • Jo, Wan-Je;Sohn, Jang Yeul
    • Architectural research
    • /
    • v.9 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • The proliferation of the House Dust Mite(HDM) is affected by temperature, humidity, ventilation, etc. Measuring temperature and humidity was performed at the very location where dust samplings take place and where they live in reality together with temperature and humidity of the ambient of the room. There has been discussion over the key environment factor of HDM survival; absolute humidity or relative humidity. It seems that relative humidity is the more important determinant for the mite's survival through the analysis of previous studies. Temperature, humidity, ventilation rate and Der P1 were measured in 4 flats in London. Mite allergen was detected in every house. Levels of Der P1 varied between <100ng/g and 22,778ng/g. Flats with high relative humidity(>50%) and poor ventilation(<0.5ach) showed higher levels of mite allergen than flats with lower humidity and adequate air change rate. Questionnaire survey was conducted and the result helped to confirm the findings from monitoring of environmental factors and the dust sampling.

Influence of Temperature and Relative Humidity in Infection of Nosema bombycis (Microsporidia: Nosematidae) and Cross-infection of N. mylitta on Growth and Development of Mulberry Silkworm, Bombyx mori

  • Chakrabarti, Satadal;Manna, Buddhadeb
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.17 no.2
    • /
    • pp.173-180
    • /
    • 2008
  • The influence of temperature and relative humidity in infection and cross-infection of Nosema bombycis and N. mylitta respectively in mulberry silkworm, Bombyx mori L. on larval mortality, multiplication of pathogens, larval weight and growth rate in three different seasons were studied. Seasons were selected in such condition, when very less fluctuations between minimum and maximum temperature and minimum and maximum relative humidity ($25{\sim}28^{\circ}C$ and $65{\sim}72%$ R.H) was observed i.e., season-1. Fluctuations between minimum and maximum temperature were less ($28.05{\sim}34.50^{\circ}C$) but R.H % was more ($55{\sim}81%$) in season-2. Fluctuations between minimum and maximum temperature and R.H % were more ($20.00{\sim}40.5^{\circ}C$ and $64.00{\sim}90.00%$) in season-3. Growth rate of microsporidian-infected silkworm is directly related to the prevailing temperature and relative humidity in silkworm. Silkworm can tolerate slight variation of temperature but slight variation of relative humidity disfavours the development of silkworm and favours the multiplication of pathogens.

Effects of Relative Humidity on the Evaporator Pressure Drop (증발기의 압력강하에 대한 상대습도의 영향)

  • 김창덕;강신형;박일환;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.

Forest Stratification Effect of Air Temperature and Humidity in the Green Space (수림의 계층구조가 녹지내의 기온 및 습도에 미치는 영향)

  • Yoon, Yong-Han
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.120-125
    • /
    • 2003
  • For this study grasp coverage condition and forest stratification to various green space, observed air temperature and relative humidity. With this data, coverage condition and air temperature, relative humidity distribution, analyzed relationship of forest rate and air temperature or relative humidity, tree numbers and green volume and humidity by revolution analysis. In this result, higher none is formed artificiality and barren area, lower zone did fores and water area. Relative humidity have corresponding type of air temperature distribution. lower Tone was higher humidity. Different of Idlest type or water area, surround of forest showed relatively higher humidity. Increasing tree numbers or green volume effect higher humidity and this efficiency order of an arbor, subarbor, shrub.

The effect of temperature and relative humidity on concrete slab specimens with impressed current cathodic protection system

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.260-265
    • /
    • 2013
  • Impressed current cathodic protection (ICCP) system is one of the most promising corrosion protection methods. The Effect of ICCP system can be changed at diverse conditions. Particularly, temperature and relative humidity plays a crucial role in CP (Cathodic Protection) effect. Thus, in this study, the influence of temperature and relative humidity on concrete specimens was investigated. Specimens were concrete slab type with a base of $400mm{\times}400mm$ and height of 70mm. To enhance the effect of CP system, seawater was used as an electrolyte. Used anode for ICCP system was mixed metal oxide (MMO) titanium. Test factors were natural potential, CP potential, CP current, and 4-hour depolarization potential. From this study, it could be confirm that CP potential and current were highly influenced by temperature and relative humidity.