• 제목/요약/키워드: temperature/humidity

검색결과 4,317건 처리시간 0.153초

과채류 포장용 골판지 상자의 저장온도와 습도에 따른 물리적 특성 변화 (Changes of the Physical Properties of Corrugated Fiberboard Boxes for Fruit and Vegetable Packaging by Preservation Temperature and Relative Humidity)

  • 이명훈;조중연;신준섭
    • 펄프종이기술
    • /
    • 제34권1호
    • /
    • pp.46-53
    • /
    • 2002
  • This study was carried out to analyze the effects of preservation temperature and relative humidity to the physical properties of corrugated fiberboard boxes for fruit and vegetable packaging. The preservation temperature did not affect severely to physical properties of corrugated fiber-board. Relative humidity was a major cause of corrugated fiberboard box quality deterioration. The burst and compressive strengths of experimental boxes measured with Mullen high pressure tester and tong crush tester were decreased gradually as relative humidity increased from 55% to 75%. But, the strength properties slightly decreased relative humidity at 75% or higher. This tendency was the greater for single wall (SW) corrugated fiberboard box than that for double wall (DW). It is suggested that development of the water-resistant corrugated fiberboard and box be needed that can be used under the condition of low temperature and high moisture content, which are being employed in the cold chain system.

흡착제로서 숯의 이용 가능성에 대한 연구 (A study of the Possibility of the Charcoal as Desiccant)

  • 김종열
    • 수산해양교육연구
    • /
    • 제26권5호
    • /
    • pp.1083-1089
    • /
    • 2014
  • The aims of this study are to find out the possibility of the charcoal as a desiccant. The only humidity control under high temperature and high humidity environment can be provided to the thermal comfort at indoor environment. Functionality of charcoal is known to be deodorization, antiseptic effect, filtering effect and humidity control. But research related to humidity control in the country not yet. Thus, the dehumidification capacity of the charcoal experimental results to see the results were as follows : 1) Entering the experimental humidification is 148.02 g/h, 161.05 g/h and 243.2 g/h when air velocity was changed 1.5 m/s, 1.7 m/s and 2.0 m/s. 2) When the basis weight of the charcoal 2.0 m/s air velocity to obtain the largest number of adsorption capacity. 3) Dru bulb temperature and dew point temperature ware measured at front and rear of the charcoal. Absolute humidity is calculated from the measured Dry bulb temperature and dew point temperature. The quantity of dehumidification is calculated from absolute humidity is the largest 129.6 g/h at the air velocity 2.0 m/s.

온도 및 습도의 단기 예측에 있어서 역전파 알고리즘의 적용 (Application of Back-propagation Algorithm for the forecasting of Temperature and Humidity)

  • 정효준;황원태;서경석;김은한;한문희
    • 환경영향평가
    • /
    • 제12권4호
    • /
    • pp.271-279
    • /
    • 2003
  • Temperature and humidity forecasting have been performed using artificial neural networks model(ANN). We composed ANN with multi-layer perceptron which is 2 input layers, 2 hidden layers and 1 output layer. Back propagation algorithm was used to train the ANN. 6 nodes and 12 nodes in the middle layers were appropriate to the temperature model for training. And 9 nodes and 6 nodes were also appropriate to the humidity model respectively. 90% of the all data was used learning set, and the extra 10% was used to model verification. In the case of temperature, average temperature before 15 minute and humidity at present constituted input layer, and temperature at present constituted out-layer and humidity model was vice versa. The sensitivity analysis revealed that previous value data contributed to forecasting target value than the other variable. Temperature was pseudo-linearly related to the previous 15 minute average value. We confirmed that ANN with multi-layer perceptron could support pollutant dispersion model by computing meterological data at real time.

추진제 KM30Al의 저장 온도/습도와 저장수명과 관계 고찰 (A Study on the Effect of Storing Temperature and Humidity upon the Self Life of Propellant KM30Al)

  • 조기홍
    • 한국군사과학기술학회지
    • /
    • 제9권1호
    • /
    • pp.13-23
    • /
    • 2006
  • A propellant mainly consisting of nitric ester including nitrocellulose and nitroglycerine is characteristic of being decomposed naturally. And this phenomenon is known as being affected mostly by its storing temperature and humidity. In this research, the effect of storing temperature and humidity on self life has been studied by measuring the contained quantity of residual stabilizer of propellant KM30Al, which are parts of 155MM propelling charge K676 and K677; the method for the measurement is acceleration aging test, and decomposition reaction equation, Eyring Equation and Berthlot Equation were used for the calculation. As result of this study, it was found that the storing temperature influenced seven times as large as the storing humidity upon the self life of the propellant KM30Al, Furthermore, especially in the high temperature region, the storing temperature had a dominant effect on the self life.

수평 실린더 표면의 착상에 대한 실험적 연구 (An Experimental Study of Frost Formation on the Horizontal Cylinder)

  • 백상진;이윤빈;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.240-245
    • /
    • 2000
  • In this study, thickness, density and effective thermal conductivity of frost forming on the horizontal cylinder were measured with various air temperature and humidity. Reynolds number and temperature of cooling surface are controlled 17300 and $-l5^{\circ}C$ respectively. In each case of air temperature $5^{\circ}C,\;10^{\circ}C,\;15^{\circ}C,$ varying absolute humidity, experiments were executed. In measuring frost surface temperature and thickness of frost layer, infrared thermocouples and CCD camera were used. Frost was gathered from cylinder to measure mass of frost layer. Experimental data showed that the thickness and effective thermal conductivity of the frost layer increase with respect to time. Thickness of frost layer increase with humidity increasing, and density of frost layer increase with air temperature rising. Frost growth with air temperature and density of frost layer with humidity are affected by whether dew point is below or above freezing point.

  • PDF

자연환기량과 포그분무량 조절에 의한 온실 온습도의 동시제어 기법 연구 (A Study on the Control of the Temperature and Relative Humidity in Greenhouse by Adjusting the Amount of Natural Ventilation and Fog Spray Quantity)

  • 김영복;성현수;황승재;김현태;유찬석
    • 한국태양에너지학회 논문집
    • /
    • 제36권5호
    • /
    • pp.31-50
    • /
    • 2016
  • To develope a greenhouse fog cooling system to control the temperature and relative humidity simultaneously to the target value, a theoretical analysis and experiments were done. The control process includes the measuring of environmental variables, setting and coding of the water and heat balance equations to maintain the target temperature and relative humidity in greenhouse, calculating of the open level of the greenhouse roof window that governs the natural ventilation and spray water quantity, and operating of the motor to open/close the roof window and pump to spray for water. The study results were shown to be very good because the average air temperature in the greenhouse was kept to be about $28.2^{\circ}C$ with the standard deviation of about $0.37^{\circ}C$ compared to the target temperature of $28^{\circ}C$ and the average relative humidity was about 75.2% compared to the target relative humidity was 75% during the experiments. The average outside relative humidity was about 41.0% and the average outside temperature was $27.2^{\circ}C$ with the standard deviation of about $0.54^{\circ}C$. The average solar intensity in the greenhouse was 712.9 W. The wind velocity of outside greenhouse was 0.558 m/s with the standard deviation of 0.46 m/s.

Humidity Calibration for a Pressure Gauge Using a Temperature-Stable Quartz Oscillator

  • Suzuki, Atsushi
    • Applied Science and Convergence Technology
    • /
    • 제25권6호
    • /
    • pp.124-127
    • /
    • 2016
  • Humidity calibration for a temperature-stable quartz oscillator (TSQO) was investigated to exclude the influences of relative humidity on the TSQO output in order to use the corresponding devices outdoors. The TSQO output is a voltage that is inversely proportional to the electric impedance of the quartz oscillator, which depends on the viscosity and density of the measured gas. The TSQO output was humidity calibrated using its humidity dependence, which was obtained by varying the relative humidity (RH) from 0 to 100 RH% while other conditions were kept constant. The humidity dependencies of the TSQO output were fit by a linear function. Subtracting the change in the TSQO output induced by the change in humidity, calculated with the function from the experimentally measured TSQO output for a range of 0-100RH%, eliminated the influence of humidity on the TSQO output. The humidity calibration succeeded in reducing the fluctuations of the TSQO output from 0.4-3% to 0.1-0.3% of the average values for a range of 0-100RH%, at constant temperatures. The necessary stability of the TSQO output for application in hydrogen sensors was below one-third of the change observed for a hydrogen leakage of 1 vol.% hydrogen concentration, corresponding to 0.33% of the change in each background. Therefore, the results in this study indicate that the present humidity calibration effectively suppresses the influence of humidity, for the TSQO output for use as an outdoor hydrogen sensor.

2-Methacryloxyethyl dimethyl 2-hydroxyethyl ammonium bromide를 이용한 고분자 습도센서의 감습 특성 및 신뢰성 (Humidity-Sensitive Characteristics and Reliabilities of Polymeric Humidity Sensors Using 2-Methacryloxyethyl dimethyl 2-hydroxyethyl ammonium brornide)

  • 이칠원;공명선
    • 공업화학
    • /
    • 제10권3호
    • /
    • pp.461-466
    • /
    • 1999
  • 암모늄염을 포함하는 고분자 습도센서를 2-methacryloxyethyl dimethyl 2-hydroxyethyl ammonium bromide (MDHAB)/MMA/DAEMA=6/3/1의 공중합체로부터 제조하였다. 감습막은 금/알루미나 전극에 침적법에 의하여 도포하였으며 $5^{\circ}C$, 40%RH, 70%RH, 그리고 90%RH에서 전형적인 임피던스는 각각 $298k{\Omega},\;11k{\Omega}$, 그리고 $2.3k{\Omega}$을 나타내어 감습특성은 저온에서 사용되는 습도 센서로서의 특성에 적합하였다. 온도 의존성 계수는 $5{\sim}20^{\circ}C$에서 $-0.80%RH/^{\circ}C$이었으며 히스테리시스는 ${\pm}2%RH$ 이내에 존재하였다. 응답 속도는 34%RH에서 88%RH로 변화할 때 38초였다. 신뢰성 시험으로서 온도 사이클, 습도 사이클, 고온 고습 저항성, 전기 인가, 장기 방치, 그리고 내수성을 측정하여 습도센서로서의 응용성을 평가하였다.

  • PDF

캐소드극 입구 가습 조건이 고분자 전해질 연료전지의 성능에 미치는 영향 (Effect of Inlet Humidity Condition at Cathode Side on Performance of a Polymer Exchange Membrane Fuel Cell)

  • 문철언;이서희;고동수;양장식;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3423-3428
    • /
    • 2007
  • This paper shows that inlet humidity condition at cathode side is one of dominant parameters affecting the performance of PEMFC. To investigate effects of inlet humidity condition, the performance measurements were conducted for a single PEMFC with two operating variables : cathode relative humidity and dry condition in anode dry. The fuel cell employed for the experiments is a unit PEMFC with a 25$Cm^2$, Nafion$^(R)$112 membrane. As a result of this study, the cell performance is getting higher by increasing inlet humidity condition at cathode side. The cell performance is different from each operating temperature an it has maximum30% higher than dry condition at 60$^{\circ}C$ operating temperature with 80% relative humidity.

  • PDF

2 kW급 개방 캐소드형 연료전지 출력 향상을 위한 온습도 제어 (Performance Increase for a 2 kW Open Cathode Type Fuel Cell Using Temperature/Humidity Control)

  • 원위위;최미화;양석란;김영배
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.369-376
    • /
    • 2017
  • Temperature and humidity regulations of an open-cathode PEM fuel cell with balance of plant (BOP) are developed in this study. The axial fan, a bubble humidifier, set of solenoid valves and a controller are used to perform temperature and humidity control simultaneously. A fuzzy controller is designed, and it shows its superiority in real-time controlling for strong non-linear dynamical fuel cell system. The axial fan speed is used for temperature control and solenoid valve on/off signal of the bubble humidifier is used for humidity control. The axial fan speed is controlled to keep the fuel cell temperature within the desired point. Meanwhile, the bubble humidifier is utilized to moisture hydrogen to manage the water content of membrane. The results show that the proposed fuzzy controller effectively increases the output power of 10% for a PEM fuel cell.