• Title/Summary/Keyword: telluride

Search Result 126, Processing Time 0.029 seconds

Properties of BiSbTe3 Thin Film Prepared by MOCVD and Fabrication of Thermoelectric Devices (MOCVD를 이용한 BiSbTe3 박막성장 및 열전소자 제작)

  • Kwon, Sung-Do;Yoon, Seok-Jin;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.443-447
    • /
    • 2009
  • Bismuth-antimony-telluride based thermoelectric thin film materials were prepared by metal organic vapor phase deposition using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_{2}Te_{3}$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $5{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_{2}Te_{3}$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_{2}Te_{3}$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the device was heated by heating block and the voltage output was measured. The highest estimated power of 1.3 ${\mu}m$ is obtained at the temperature difference of 45 K.

Evaluation of Image Quality by Using Various Detector Materials according to Density : Monte Carlo Simulation Study (몬테카를로 시뮬레이션 기반 밀도에 따른 다양한 검출기 물질을 적용한 획득 영상 평가)

  • LEE, Na-Num;Choi, Da-Som;Lee, Ji-Su;Park, Chan-Rok
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.459-464
    • /
    • 2021
  • The detector performance is important role in acquiring the gamma rays from patients. Among parameters of detector performances, there is density, which relates to respond to gamma rays. Therefore, we confirm the detection efficiency according to various detector materials based on the density parameter using GATE (geant4 application for emission tomography) simulation tool. The NaI (density: 3.67 g/cm3), CZT (Cadimium Zinc Telluride) (density: 5.80 g/cm3), CdTe (Cadmium Telluride) (5.85 g/cm3), and GAGG (Gadoinium Aluminum Gallium Garnet) (density g/cm3) were used as detector materials. In addition, the point source and quadrant bar phantom, which is modeled for 0.5, 1.0, 1.5, and 2.0 mm thicknesses, were modeled to confirm the quatitative analysis using sensitivity (cps/MBq) and the full width at half maximum (FWHM, mm) at the 2.0 mm bar thickness containing visual evaluation. Based on the results, the sensitivity for NaI, CZT, CdTe, and GAGG detector materials were 0.12, 0.15, 0.16, and 0.18 cps/MBq. In addition, the FWHM for quadrant bar phantom in the 2.0 mm bar thickness is 3.72, 3.69, 3.70, and 3.73 mm for NaI, CZT, CdTe, and GAGG materials, respectively. Compared with performance of detector materials according to density, the high density can improve detection efficiency in terms of sensitivity and mean count. Among these detector materials, the GAGG material is efficient for detection of gamma rays.

Electrochemical Analysis of CdTe Deposition Using Cyclovoltammetric Method for Hybrid Solar Cell Application (나노복합 태양전지를 위한 CdTe 전착 거동의 순환전류법을 이용한 전기화학적 분석)

  • Kim, Seong-Hun;Han, Wone-Keun;Jin, Hong-Sung;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.197-202
    • /
    • 2009
  • The electrodeposition in acidic aqueous electrolyte bath of cadmium telluride on gold electrodes has been studied by electrochemical analysis. Conventional cyclic voltammetry using potentiostat is considered as a reliable method to study electrochemical behavior of electrodeposition of CdTe. In this paper, the mechanism of CdTe deposition and its cyclic voltammetry were studied with the Te ion concentration, temperature, potential, and scan rate. We also investigated surface morphologies using FESEM and atomic composition of Cd and Te using EDS. Atomic composition of Cd and Te were varied with Te ion concentration in the electrolyte.

SnS (tin monosulfide) thin films obtained by atomic layer deposition (ALD)

  • Hu, Weiguang;Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.305.2-305.2
    • /
    • 2016
  • Tin monosulfide (SnS) is one promising candidate absorber material which replace the current technology based on cadmium telluride (CdTe) and copper indium gallium sulfide selenide (CIGS) for its suitable optical band gap, high absorption coefficient, earth-abundant, non-toxic and cost-effective. During past years work, thin film solar cells based on SnS films had been improved to 4.36% certified efficiency. In this study, Tin monosul fide was obtained by atomic layer deposition (ALD) using the reaction of Tetrakis (dimethylamino) tin (TDMASn, [(CH3)2N]4Sn) and hydrogen sulfide (H2S) at low temperatures (100 to 200 oC). The direct optical band gap and strong optical absorption of SnS films were observed throughout the Ultraviolet visible spectroscopy (UV VIS), and the properties of SnS films were analyzed by sanning Electron Microscope (SEM) and X-Ray Diffraction (XRD).

  • PDF

A study on the synthesis and characterization of CdTe nanocrystals (CdTe 나노결정의 합성과 특성분석에 관한 연구)

  • 주상민;강윤묵;김동환
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.111-111
    • /
    • 2003
  • 반도체 나노결정은 양자구속효과(quantum confinement effect)에 의한 광학적인 특성을 갖기 때문에 광전자공학(optoelectronic), 광전지(photovoltaic)분야에 응용하려는 연구가 활발히 진행되고 있다. 본 연구에서는 고순도의 CdTe 나노결정을 1-thioglycerol 표면 완화제(surface stabilizer)로 사용하여 수용액 상태로 합성하였다. 모든 실험은 $N_2$ 분위기의 삼각플라스크에서 실험하였다. Cadmium 소오스로는 Cd(CIO$_4$)$_2$.6$H_2O$(Cadmium perchlorate hydrate-Aldrich)를 사용하였고 Tellurium 소오스로는 A1$_2$Te$_3$(Aluminum telluride-CERAC)와 H$_2$SO$_4$가 반응하여 H$_2$Te gas가 주입되도록 하였다. 합성된 CdTe 나노결정은 core-shell 형태로 존재하며 결정크기에 따른 특성분석을 위해서 High Resolution Transmission Electron Microscope (HRTEM), Photoluminescence spectroscopy, X-ray diffraction(XRD), UV-vis absorption spectra 분석을 하였다 또한 CdTe 나노결정을 나노와이어로 제작하여 CdTe 나노결정을 이용한 태양전지 제작에 응용하고자 한다.

  • PDF

The Hall Effect in Binary Compound Silver Telluride Single Crystal (2원화합물 Ag2Te 단결정의 Hall 효과 특성)

  • Choi, Chang-Ju;Kang, Won-Chan;Min, Wan-Ki;Kim, Nam-Oh
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.171-174
    • /
    • 2004
  • The $Ag_2Te$ crystal was grown by the Bridgman method. The $Ag_2Te$ crystal was an monoclinic structure with lattice constance a = $8.1686{\AA}$, b = $9.0425{\AA}$, c = $8.0065{\AA}$. Hall effect shows a n-type conductivity in the $Ag_2Te$ crystal. The electrical resistivity was 1.080e-$3{\Omega}cm$ and electron mobility was $-5.48{\times}10^3cm^2/V{\cdot}sec$ at room temperature(RT).

Thermal Stresses Near the Crystal-Melt Interface During the Floating-Zone Growth of CdTe Under Microgravity Environment (미세중력장 CdTe 흘로우팅존 생성에서 결정체-용융액 계면주위의 열응력)

  • Lee Kyu-Jung
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.100-107
    • /
    • 1998
  • A numerical analysis of thermal stress over temperature variations near the crystal-melt interface is carried out for a floating-zone growth of Cadmium Telluride (CdTe). Thermocapillary convection determines crystal-melt interfacial shape and signature of temperature in the crystal. Large temperature gradients near the crystal-melt interface yield excessive thermal stresses in a crystal, which affect the dislocations of the crystal. Based on the assumption that the crystal is elastic and isotropic, thermal stresses in a crystal are computed and the effects of operating conditions are investigated. The results show that the extreme thermal stresses are concentrated near the interface of a crystal and the radial and the tangential stresses are the dominant ones. Concentrated heating profile increases the stresses within the crystal, otherwise, the pulling rate decreases the stresses.

  • PDF

Aqueous synthesis of quantum dots using functionalized ionic liquid (이온성 액체를 이용한 수계 양자 점 합성)

  • Choi, Suk-Young;Kim, Tae-Young;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.254-254
    • /
    • 2010
  • We report aqueous synthesis of cadmium telluride (CdTe) quantum dots(QDs) using imidazolium-based ionic liquids with various functional groups. The functinalized ionic liquids were designed to have thiol groups, and then phase transfer with aqueous or organic solvents can be adjusted by changing side chain lengths of the cation and the choice of anion. The quantum yield was obtained IL-functionalized CdTe QDs reached up to 40% by post-treatment method.

  • PDF

The Hall Effect in Binary Compound Silver telluride Single Crystal (2원화화물 $Ag_2Te$ 단결정의 Hall 효과 특성)

  • Kim, N.O.;Kim, H.G.;Jang, S.N.;Lee, K.S.;Bang, T.W.;Hyun, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.134-136
    • /
    • 2004
  • The results of investigations of $Ag_2Te$ crystal is presented. $Ag_2Te$ crystal was grown by the Bridgman method. The $Ag_2Te$ crystal was an monoclinic structure with lattice constance a = 8.1686 A, b = 9.0425 ${{\AA}}$, c = 8.0065 ${{\AA}}$. Hall effect shows a n-type conductivity in the $Ag_2Te$ crystal. The electrical resistivity values was $1.080e^{-3}{\Omega}cm$ and electron mobility was $-5.48{\times}10^3cm^2/V{\cdot}sec$ at room temperature(RT).

  • PDF

New Tunneling Model Including both the Thermal and the Tunneling Transition through Trap (트랩을 통한 열적 천이와 터널링 천이를 동시에 고려할 수 있는 새로운 터널링 모델에 관한 연구)

  • 박장우;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.71-77
    • /
    • 1992
  • According to increasing the doping concentration in p-n junction, a tunneling current through trap as well as SRH(Shockley-Read-Hall) generation-recombination current in depletion region occurs. It is the tunneling current that is a dominant current at the forward bias. In this paper, the new tunneling-recombination equation is derived. The thermal generation-recombination current and tunneling current though trap can be easily calculated at the same time because this equation has the same form as the SRH generation-recombination equation. For the validity of this equation, 2 kind of samples are simulated. The one is $n^{+}$-p junction device fabricated with MCT(Mercury Cadmium Telluride, mole fraction=0.29), the other Si n$^{+}-p^{+}$ junction. From the results for MCT $n^{+}$-p junction device and comparing the simulated and expermental I-V characteristics for Si n$^{+}-p^{+}$ junction, it is shown that this equation is a good description for tunneling through trap and thermal generation-recombination current calculation.

  • PDF