• Title/Summary/Keyword: telescope

Search Result 1,549, Processing Time 0.026 seconds

Optic-axis Alignment and Performance Test of the Schwarzschild-Chang Off-axis Telescope

  • Park, Woojin;Pak, Soojong;Chang, Seunghyuk;Jeong, Byeongjoon;Lee, Kwang Jo;Kim, Yonghwan;Ji, Tae-Geun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.56.4-57
    • /
    • 2017
  • The Schwarzschild-Chang off-axis telescope is a "linear astigmatism-free" confocal system. The telescope comprises two pieces of aluminum-alloy freeform mirrors that are fabricated with diamond turning machine (DTM) process. We designed optomechanical structures where optical components in the telescope system can be adjustable on a linear stage. Optomechanical deformation caused by the weight of system itself and its temperature variation is analyzed by the finite element analysis (FEA). The results show that the deformation is estimated in the tolerance range. For the optic-axis alignment of telescope system, three-point alignment (TPA) method is chosen. The TPA method uses three parallel lasers and a plane mirror. Point source images were taken from collimated light and field observation. The performance of optical system was tested by point spread function and aberration measurement of the point sources.

  • PDF

Performance Evaluation of the Tip-tilt Actuator in Fast Steering Secondary Mirror for Large Telescope (대형 망원경용 FSM(Fast Steering Secondary Mirror)을 위한 팁틸트 액츄에이터의 성능평가)

  • Kim, Ho Sang;Lee, Dong-Chan;Lee, Kyoung-Don;Kim, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.403-409
    • /
    • 2014
  • For ground-based telescope application, the performance assessment of tip-tilt actuator is important because the optical quality of telescope depends upon the windshake compensation ability of the fast steering secondary mirror. But it is difficult to measure the performance characteristics of the actuators due to the large size mirror and test facilities including the vacuum support and structural frame. In this paper, the full-scale tip-tilt test bed for the large size secondary mirror with diameter of 1m is built and the several tests are performed including the range, resolution and frequency response function. From the measurement results, it is shown that the tip-tilt actuator can successfully compensate the windshake with frequency of maximum 12 Hz and be a candidate for the Giant Magellan Telescope.

A Study on the Economic Effects of Korean Large Telescope Project (대형광학망원경 개발사업의 경제적 효과 분석 연구)

  • Yoo, Seung-Hoon;Lee, Joo-Suk;Park, Su-Dong
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.1
    • /
    • pp.40-59
    • /
    • 2011
  • Korean government is driving the large telescope development project to improve the level of astronomical research. The objective of this study is to assess the economic effects of Korean large telescope project by employing a contingent valuation method (CVM) to provide policy-makers with useful and responsible information. According to estimating results, annually willingness to pay per household is 1,416 Korean Won. Consequently, the annual benefit of large telescope project is about 240.8 billion Korean won. This result contributes to provide policy makers with the quantitative information and for economic feasibility.

  • PDF

Optics of the light-weight and foldable telescope based on the Fresnel lens

  • Yu, Hyungjoon;Park, Yong-Sun;Chung, Haeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.57.3-58
    • /
    • 2016
  • We analyze an optical system of a telescope based on Fresnel type objective lens as suggested by Hyde (1999). The Fresnel objective lens can be thin, light-weight and foldable, and therefore it is possible to develop a space telescope with an aperture larger than that of traditional telescopes. Moreover a lens, whatever it is either Fresnel type or conventional, allows much larger fabrication tolerances. We design a medium-sized telescope adopting Fresnel lens as an objective lens for use in space and possibly on the ground. The well-known chromatic aberration of the Fresnel primary lens is corrected by a field lens and another Fresnel lens using Schupmann method. An additional lens is used for forming images. We analyze the chromatic and off-axis aberrations of the proposed system analytically and suggest methods for the minimization of off-axis aberrations and for the operation in wider spectral range. We also conduct ray tracing and optimize the whole optical system with commercial software. Finally we present the design parameters of a telescope with an aperture of 0.5 to 1 meters, enabling diffraction limited operation for a moderate field of view about 10 arc-minutes.

  • PDF

DEVELOPMENT OF THE OPTICAL ALIGNMENT SYSTEM FOR FIB SECONDARY OF THE 1.8M OPTICAL TELESCOPE (보현산천문대 1.8m 광학 망원경 f/8 부경 광축 조정 장치 개발)

  • Yuk, In-Su;Jang, Jeong-Gyun;Seong, Hyeon-Cheol
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.163-175
    • /
    • 1996
  • We propose the development and test result of new optical axis alignment system for the interchangeable F/8 secondary mirror of the BOAO 1.8m telescope system. Since the original system was not equipped with a suitable optical alignment facility, the whole alignment process was performed by hand. It was necessary at least three persons working more than 2 nights and the altitude of the telescope could not exceed 10 degrees, in such altitude the alignment quality was not so good by atmospheric effect. The new system adopts position readable motorized system and remote control operation by the computer installed in observation room, which reduces the number of workers to only one and eliminates the altitude restriction. The defocused CCD image pair obtained at higher altitude makes the aberration estimates more accurately and the number of required alignment loops is reduced from 10 to 4. The system has been installed on September 1, and performed alignment three times. The test results show that the system is stable and accurate, gives better optical performance of the telescope under F/8 focus. We hope to emphasize the fact that the new system will increase observation time of the telescope by about 20 nights per year assuming one alignment in every month.

  • PDF

Optical Design of a Reflecting Telescope for CubeSat

  • Jin, Ho;Lim, Juhee;Kim, Youngju;Kim, Sanghyuk
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.533-537
    • /
    • 2013
  • Space telescope optics is one of the major parts of any space mission used to observe astronomical targets or the Earth. This kind of space mission typically involves bulky and complex opto-mechanics with a long optical tube, but attempts have been made to observe a target with a small satellite. In this paper, we describe the optical design of a reflecting telescope for use in a CubeSat mission. For this design we adopt the off-axis segmented method for astronomical observation techniques based on a Ritchey-Chr$\acute{e}$tien type telescope. The primary mirror shape is a rectangle with dimensions of $8cm{\times}8cm$, and the secondary mirror has dimensions of $2.4cm{\times}4.1cm$. The focal ratio is 3 which can yield a 0.383 degree diagonal angle in a $1280{\times}800$ CMOS color image sensor with a pixel size of $3{\mu}m{\times}3{\mu}m$. This optical design can capture a ${\sim}4km{\times}{\sim}2.3km$ area of the earth's surface at 700 km altitude operation.

Kyung Hee University Automatic Observing Software for 10 cm Telescope (KAOS10)

  • Kim, Changgon;Han, Jimin;Ji, Tae-Geun;Lee, Hye-In;Pak, Soojong;Im, Myungshim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.72.3-72.3
    • /
    • 2019
  • The observation of transient objects such as supernovae or variable stars requires a survey of the wide sky and quickly extracting the results. In accordance with this purpose, we have been developing an automatic observing software, KAOS (Kyung Hee University Automatic Observing Software) as a series. KAOS30 was the first series of KAOS and it was applied to the 30-inch platform at the McDonald Observatory in the United States of America. KAOS76 controls the 76-cm telescope at Kyung Hee Astronomical Observatory. In this poster, we introduce KAOS10 for controlling a portable telescope with a small aperture size attaching a guiding camera as QHY-5L II. Kyung Hee University auto-guiding package which includes the auto-guiding function for small aperture size telescope was also developed. Additionally, the Telescope Control Package(TCP) can communicate with the main server to do astrometry for pointing and identifying targets efficiently. KAOS10 has a universal interface that will be useful for the research of both amateurs and professionals.

  • PDF

Korean Small Telescope Network (소형망원경 네트워크)

  • Im, Myungshin;Kim, Yonggi;Kang, Wonseok;Lee, Chung-Uk;Lee, Heewon;Shim, Hyunjin;Sung, Hyun-Il;Ishiguro, Masateru;Kim, Seung-Lee;Kim, Taewoo;Shin, Min-Su;Yoon, Joh-Na;Woo, Jong Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.59.4-59.4
    • /
    • 2019
  • In this talk, we will give an overview of the small telescope network project in Korea. The small telescope network is a project in planning that would gather 0.4m-1.0m telescopes in Korea together for a common use in research and education, and the project is being led by the Optical/IR Astronomy Division of KAS. Even in the era of giant telescopes, small telescopes are still competitive for various research topics that require rapid response or long-term, steady monitoring. There are quite a few small telescopes in Korea, but the research use of these telescope has been very limited. By organizing these telescopes together, the small telescope network hopes to bring these telescopes in full operation and offer Korean astronomers competitive observational resources. In this talk, we will outline the project, describe potential resources, and several science cases such as multi-messenger astronomy, supernovae, and AGN. We will also introduce how this project might be run, with the expected operation of the small network starting at 2020.

  • PDF

Mechanical Design for an Optical-telescope Assembly of a Satellite-laser-ranging System

  • Do-Won Kim;Sang-Yeong Park;Hyug-Gyo Rhee;Pilseong Kang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.419-427
    • /
    • 2023
  • The structural design of an optical-telescope assembly (OTA) for satellite laser ranging (SLR) is conducted in two steps. First, the results of a parametric study of the major design variables (e.g. dimension and shape) of the OTA part are explained, and the detailed structural design of the OTA is derived, considering the design requirements. Among the structural-shape concepts of various OTAs, the Serrurier truss concept is selected in this study, and the collimation of the telescope according to the design variables is extensively discussed. After generating finite-element models for different structural shapes, self-gravity analyses are performed. To minimize the deflection and tilt of the mirror and frame for the OTA under the limited design requirements, a parametric study is conducted according to design variables such as the shapes of the upper and lower struts and the spider vane. The structural features found in the parametric study are described. Finally, the OTA structure is designed in detail to maintain the optical alignment by balancing the gravity deflections of the upper and lower trusses using the optimal combination of the parameters. Additionally, thermal analysis of the optical telescope design is evaluated.

Recent Developments at the Large Binocular Telescope Observatory, GMT's forerunner

  • Veillet, Christian
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.70.3-70.3
    • /
    • 2015
  • After a short description of the telescope, we will report on the recent developments in three main areas: - Commissioning of the last of LBT's first generation instruments, now well underway, - Adaptive Optics (AO) and ground-layer AO progress and planned upgrades, - Interferometry first science results. We will also explore the future of the facility as it moves to full operation and strive to be the first of the ELTs in the decade-long window in which GMT, TMT, and E-ELT break ground and start taking shape.

  • PDF