• Title/Summary/Keyword: technology forecasting

Search Result 779, Processing Time 0.026 seconds

Research on Forecasting Framework for System Marginal Price based on Deep Recurrent Neural Networks and Statistical Analysis Models

  • Kim, Taehyun;Lee, Yoonjae;Hwangbo, Soonho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.

Performance Analysis of Grid Resolution and Storm Sewage Network for Urban Flood Forecasting (지표격자해상도 및 우수관망 간소화 수준에 따른 도시홍수 예측 성능검토)

  • Sang Bo Sim;Hyung-Jun Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • With heavy rainfall due to extreme weather causing increasing damage, the importance of urban flood forecasting continues to grow. To forecast urban flooding accurately and promptly, a sewer network and surface grid with appropriate detail are necessary. However, for urban areas with complex storm sewer networks and terrain structures, high-resolution grids and detailed networks can significantly prolong the analysis. Therefore, determining an appropriate level of network simplification and a suitable surface grid resolution is essential to secure the golden time for urban flood forecasting. In this study, InfoWorks ICM, a software program capable of 1D-2D coupled simulation, was used to examine urban flood forecasting performance for storm sewer networks with various levels of simplification and different surface grid resolutions. The inundation depth, inundation area, and simulation time were analyzed for each simplification level. Based on the analysis, the simulation time was reduced by up to 65% upon simplifying the storm sewer networks and by up to 96% depending on the surface grid resolution; further, the inundation area was overestimated as the grid resolution increased. This study provides insights into optimizing the simplification level and surface grid resolution for storm sewer networks to ensure efficient and accurate urban flood forecasting.

Method of Demand Forecasting for Demand Controller (최대수요전력 관리 장치의 최대수요전력 예측 방법에 관한 연구)

  • Kwon, Yong-Hun;Kim, Ho-Jin;Kong, In-Yeup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.833-836
    • /
    • 2012
  • Demand Controller is a load control device that monitor the current power consumption and calculate the forecast power to not exceed the power set by consumer. Accurate demand forecasting is important because of controlling the load use the way that sound a warning and then blocking the load when if forecasted demand exceed the power set by consumer. When if consumer with fluctuating power consumption use the existing forecasting method, management of demand control has the disadvantage of not stable. In this paper, examine the existing forecasting method and the exponential smoothing method, and then propose the forecasting method using Kalman Filter algorithm.

  • PDF

A novel SARMA-ANN hybrid model for global solar radiation forecasting

  • Srivastava, Rachit;Tiwaria, A.N.;Giri, V.K.
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.131-143
    • /
    • 2019
  • Global Solar Radiation (GSR) is the key element for performance estimation of any Solar Power Plant (SPP). Its forecasting may help in estimation of power production from a SPP well in advance, and may also render help in optimal use of this power. Seasonal Auto-Regressive Moving Average (SARMA) and Artificial Neural Network (ANN) models are combined in order to develop a hybrid model (SARMA-ANN) conceiving the characteristics of both linear and non-linear prediction models. This developed model has been used for prediction of GSR at Gorakhpur, situated in the northern region of India. The proposed model is beneficial for the univariate forecasting. Along with this model, we have also used Auto-Regressive Moving Average (ARMA), SARMA, ANN based models for 1 - 6 day-ahead forecasting of GSR on hourly basis. It has been found that the proposed model presents least RMSE (Root Mean Square Error) and produces best forecasting results among all the models considered in the present study. As an application, the comparison between the forecasted one and the energy produced by the grid connected PV plant installed on the parking stands of the University shows the superiority of the proposed model.

Developing Optimal Demand Forecasting Models for a Very Short Shelf-Life Item: A Case of Perishable Products in Online's Retail Business

  • Wiwat Premrudikul;Songwut Ahmornahnukul;Akkaranan Pongsathornwiwat
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Demand forecasting is a crucial task for an online retail where has to manage daily fresh foods effectively. Failing in forecasting results loss of profitability because of incompetent inventory management. This study investigated the optimal performance of different forecasting models for a very short shelf-life product. Demand data of 13 perishable items with aging of 210 days were used for analysis. Our comparison results of four methods: Trivial Identity, Seasonal Naïve, Feed-Forward and Autoregressive Recurrent Neural Networks (DeepAR) reveals that DeepAR outperforms with the lowest MAPE. This study also suggests the managerial implications by employing coefficient of variation (CV) as demand variation indicators. Three classes: Low, Medium and High variation are introduced for classify 13 products into groups. Our analysis found that DeepAR is suitable for medium and high variations, while the low group can use any methods. With this approach, the case can gain benefit of better fill-rate performance.

Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

  • Kim, Sungki;Ko, Wonil;Nam, Hyoon;Kim, Chulmin;Chung, Yanghon;Bang, Sungsig
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1063-1070
    • /
    • 2017
  • This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.

Forecasting Multi-Generation Diffusion Demand based on System Dynamics : A Case for Forecasting Mobile Subscription Demand (시스템다이내믹스 기반의 다세대 확산 수요 예측 : 이동통신 가입자 수요 예측 적용사례)

  • Song, Hee Seok;kim, Jae Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.2
    • /
    • pp.81-96
    • /
    • 2017
  • Forecasting long-term mobile service demand is inevitable to establish an effective frequency management policy despite the lack of reliability of forecast results. The statistical forecasting method has limitations in analyzing how the forecasting result changes when the scenario for various drivers such as consumer usage pattern or market structure for mobile communication service is changed. In this study, we propose a dynamic model of the mobile communication service market using system dynamics technique and forecast the future demand for long-term mobile communication subscriber based on the dynamic model, and also experiment on the change pattern of subscriber demand under various scenarios.

Short-term Electric Load Forecasting Using Data Mining Technique

  • Kim, Cheol-Hong;Koo, Bon-Gil;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.807-813
    • /
    • 2012
  • In this paper, we introduce data mining techniques for short-term load forecasting (STLF). First, we use the K-mean algorithm to classify historical load data by season into four patterns. Second, we use the k-NN algorithm to divide the classified data into four patterns for Mondays, other weekdays, Saturdays, and Sundays. The classified data are used to develop a time series forecasting model. We then forecast the hourly load on weekdays and weekends, excluding special holidays. The historical load data are used as inputs for load forecasting. We compare our results with the KEPCO hourly record for 2008 and conclude that our approach is effective.

Load Forecasting and ESS Scheduling Considering the Load Pattern of Building (부하 패턴을 고려한 건물의 전력수요예측 및 ESS 운용)

  • Hwang, Hye-Mi;Park, Jong-Bae;Lee, Sung-Hee;Roh, Jae Hyung;Park, Yong-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1486-1492
    • /
    • 2016
  • This study presents the electrical load forecasting and error correction method using a real building load pattern, and the way to manage the energy storage system with forecasting results for economical load operation. To make a unique pattern of target load, we performed the Hierarchical clustering that is one of the data mining techniques, defined load pattern(group) and forecasted the demand load according to the clustering result of electrical load through the previous study. In this paper, we propose the new reference demand for improving a predictive accuracy of load demand forecasting. In addition we study an error correction method for response of load events in demand load forecasting, and verify the effects of proposed correction method through EMS scheduling simulation with load forecasting correction.

Spatio-temporal Load Forecasting Considering Aggregation Features of Electricity Cells and Uncertainties in Input Variables

  • Zhao, Teng;Zhang, Yan;Chen, Haibo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.38-50
    • /
    • 2018
  • Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based power map, which could be a useful tool for the visualization and tendency assessment of urban energy application. Constructing one point-forecasting model for each electricity cell in the geographic space is possible; however, it is unadvisable and insufficient, considering the aggregation features of electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least squares support vector regression networks), and interval forecasting of spatio-temporal load with sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-level clustering show that electricity cells in the same category are clustered in geographic space to some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load forecasting demonstrate that the proposed prediction-interval construction method can effectively convey the uncertainties in input variables.