• Title/Summary/Keyword: techno

Search Result 19,097, Processing Time 0.027 seconds

On Beck's column with shear and compressibility

  • Cveticanin, L.J.;Atanackovic, T.M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.747-756
    • /
    • 1998
  • In this paper the influence of rotary inertia, shear and compressibility on the value of the critical force for the Beck's column is analyzed. The constitutive equation is of Engesser's type. As a result, the critical load parameter for which instability of flutter type occurs is calculated for several values of the column's parameters.

Analysis of unreinforced masonry (URM) walls and evaluation of retrofitting schemes for URM structures

  • Mehta, Sanjay;Saadeghvaziri, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.801-815
    • /
    • 1998
  • An overview of an analytical model to predict mortar joint failure in unreinforced masonry (URM) structures is presented. The validity of the model is established by comparison with experimental results at element level as well as structure level. This model is then used to study the behavior of URM walls and two commonly used retrofitting schemes. Finally, effectiveness of the two retrofitting schemes in increasing strength and stiffness of existing URM walls is discussed.

Out-of-plane vibration of multi-span curved beam due to moving loads

  • Wang, Rong-Tyai;Sang, Yiu-Lo
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.361-375
    • /
    • 1999
  • This paper presents an analytic method of examining the out-of-plane vibration of continuous curved beam on periodical supports. The orthogonality of two distinct sets of mode shape functions is derived. The forced vibration of beam due to moving loads is examined. Two types of moving loads, which are concentrated load and uniformly distributed load, are considered. The response characteristics of beam induced by these loads are investigated as well.

Viscoplastic analysis of thin-walled tubes under cyclic bending

  • Pan, Wen-Fung;Hsu, Chien-Min
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.457-471
    • /
    • 1999
  • In this paper, different curvature-rates are controlled to highlight the characteristic of viscoplastic response in cyclic bending tests. The curvature-ovalization apparatus, which was designed by Pan et al. (1998), is used for conducting the curvature-controlled experiments on thin-walled tubular specimens for AISI 304 stainless steel under cyclic bending. The results reveals that the faster the curvature-rate implies, the fast degree of hardening of the metal tube. However, the ovalization of the tube cross-section increases when the curvature-rate increases.

Hopfield neuron based nonlinear constrained programming to fuzzy structural engineering optimization

  • Shih, C.J.;Chang, C.C.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.485-502
    • /
    • 1999
  • Using the continuous Hopfield network model as the basis to solve the general crisp and fuzzy constrained optimization problem is presented and examined. The model lies in its transformation to a parallel algorithm which distributes the work of numerical optimization to several simultaneously computing processors. The method is applied to different structural engineering design problems that demonstrate this usefulness, satisfaction or potential. The computing algorithm has been given and discussed for a designer who can program it without difficulty.

Review of seismic vibration control using 'smart materials'

  • Valliappan, S.;Qi, K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.617-636
    • /
    • 2001
  • For the potential application of smart materials to seismic structural control, this paper reviews seismic control techniques for civil engineering structures, and developments of smart materials for vibration and noise control. Analytical and finite element methods adopted for the design of distributed sensors/actuators using piezoelectric materials are discussed. Investigation of optimum position of sensors/actuators and damping are also outlined.

Applications of an improved estimator of the constitutive relation error to plasticity problems

  • Gallimard, L.;Ladeveze, P.;Pelle, J.P.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.381-400
    • /
    • 2002
  • This paper presents several applications of an improved estimator of the constitutive relation error (CRE) for plasticity problems. The cumulative aspect of the CRE estimator with respect to time is analyzed and we propose a first analysis of the local effectivity indexes of the CRE estimator in plasticity.

Transverse earthquake-induced forces in continuous bridges

  • Armouti, Nazzal S.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.733-738
    • /
    • 2002
  • A simplified rational method is developed to evaluate transverse earthquake-induced forces in continuous bridges. This method models the bridge as a beam on elastic foundation, and assumes a sinusoidal curve for both vibration mode shape and deflected shape in the transverse direction. The principle of minimum total potential is used to calculate the displacements and the earthquake-induced forces in the transverse direction. This method is concise and easy to apply, and hence, offers an attractive alternative to a lengthy and time consuming three dimensional modeling of the bridge as given by AASHTO under its Single Mode Spectral Analysis Method.

Some explicit solutions to plane equilibrium problem for no-tension bodies

  • Lucchesi, Massimiliano;Zani, Nicola
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.295-316
    • /
    • 2003
  • A method is presented to integrate explicitly certain equilibrium problems for no-tension bodies, in absence of body forces and under the assumption that two of the principal stresses are everywhere null. The method is exemplified in the case of rectangular panels, clamped at their bottoms and loaded at their tops.

Natural vibration analysis of coaxial shells coupled with fluid

  • Jhung, Myung Jo;Choi, Young Hwan;Jeong, Kyeong Hoon
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.655-674
    • /
    • 2003
  • Investigated in this study are the natural vibration characteristics of the coaxial cylindrical shells coupled with a fluid. Theoretical method is developed to find the natural frequencies of the shell using the finite Fourier series expansion, and their results are compared with those of finite element method to verify the validation of the method developed. The effect of the fluid-filled annulus and the boundary conditions on the modal characteristics of the coaxial shells is investigated using a finite element modeling.