• 제목/요약/키워드: teaming control

검색결과 117건 처리시간 0.025초

수직다물체시스템의 반복정밀도 향상에 관한 연구 (Research for Improvement of Iterative Precision of the Vertical Multiple Dynamic System)

  • 이수철;박석순
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.64-72
    • /
    • 2004
  • An extension of interaction matrix formulation to the problem of system and disturbance identification for a plant that is corrupted by both process and output disturbances is presented. The teaming control develops controllers that learn to improve their performance at executing a given task, based on experience performing this task. The simplest forms of loaming control are based on the same concept as integral control, but operating in the domain of the repetitions of the task. This paper studies the use of such controllers in a decentralized system, such as a robot moving on the vertical plane with the controller for each link acting independently. The basic result of the paper is to show that stability and iterative precision of the learning controllers for all subsystems when the coupling between subsystems is turned off, assures stability of the decentralized teaming in the coupled system, provided that the sample time in the digital teaming controller is sufficiently short. The methods of teaming system are shown up for the iterative precision of each link.

이족 보행 로봇의 반복 걸음새 제어를 위한 학습 제어기 (A Learning Controller for Repetitive Gate Control of Biped Walking Robot)

  • 임동철;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.538-538
    • /
    • 2000
  • This paper presents a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of teaming control to biped robotic motion is shown via dynamic simulation with 12 dof biped robot.

  • PDF

적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어 (Maximum Torque Control of IPMSM with Adaptive Learning Fuzzy-Neural Network)

  • 고재섭;최정식;이정호;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.309-314
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current md voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using adaptive teaming fuzzy neural network and artificial neural network. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper proposes speed control of IPMSM using adaptive teaming fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive teaming fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive teaming fuzzy neural network and artificial neural network.

  • PDF

비선형 시스템에 적용가능한 피드백 사용형 2차 반복 학습제어 알고리즘 (A Second-Order Iterative Learning Algorithm with Feedback Applicable to Nonlinear Systems)

  • 허경무;우광준
    • 제어로봇시스템학회논문지
    • /
    • 제4권5호
    • /
    • pp.608-615
    • /
    • 1998
  • In this paper a second-order iterative learning control algorithm with feedback is proposed for the trajectory-tracking control of nonlinear dynamic systems with unidentified parameters. In contrast to other known methods, the proposed teaming control scheme utilize more than one past error history contained in the trajectories generated at prior iterations, and a feedback term is added in the learning control scheme for the enhancement of convergence speed and robustness to disturbances or system parameter variations. The convergence proof of the proposed algorithm is given in detail, and the sufficient condition for the convergence of the algorithm is provided. We also discuss the convergence performance of the algorithm when the initial condition at the beginning of each iteration differs from the previous value of the initial condition. The effectiveness of the proposed algorithm is shown by computer simulation result. It is shown that, by adding a feedback term in teaming control algorithm, convergence speed, robustness to disturbances and robustness to unmatched initial conditions can be improved.

  • PDF

실시간 진화 알고리듬을 통한 신경망의 적응 학습제어 (Adaptive Learning Control of Neural Network Using Real-Time Evolutionary Algorithm)

  • 장성욱;이진걸
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1092-1098
    • /
    • 2002
  • This paper discusses the composition of the theory of reinforcement teaming, which is applied in real-time teaming, and evolutionary strategy, which proves its the superiority in the finding of the optimal solution at the off-line teaming method. The individuals are reduced in order to team the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations are proposed. It is possible to control the control object varied as time changes. As the state value of the control object is generated, applied evolutionary strategy each sampling time because of the teaming process of an estimation, selection, mutation in real-time. These algorithms can be applied, the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes. In the future, studies are needed on the proof of the theory through experiments and the characteristic considerations of the robustness against the outside disturbances.

수직다물체시스템의 간접적응형 분산학습제어에 관한 연구 (A Study on Indirect Adaptive Decentralized Learning Control of the Vertical Multiple Dynamic System)

  • 이수철;박석순;이재원
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.92-98
    • /
    • 2005
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized teaming control based on adaptive control method. The original motivation of the teaming control field was loaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Some techniques will show up in the numerical simulation for vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link.

혼합형 학습규칙 신경 회로망을 이용한 제어 방식 (Control Method using Neural Network of Hybrid Learning Rule)

  • 임중규;이현관;권성훈;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 춘계종합학술대회
    • /
    • pp.370-374
    • /
    • 1999
  • 본 논문에서는 역전파 알고리즘과 헵 학습규칙의 장점을 최대한 살려 이용하고, 역전파 알고리즘의 문제점인 지역 최소점에 빠지는 경우와 학습시간이 느린 단점과 헵 학습규칙의 문제점인 학습 패턴의 저장능력이 매우 제한되고 선형적 분리가 되지 않는 복잡한 문제에는 적용할 수 없다는 단점등을 개선하기 위하여 혼합형 학습규칙을 제안한다. 제안하는 학습규칙은 입력층과 은닉층에 흔합형 학습규칙과 은닉층과 출력층에 역전파(Back-Propagation) 학습규칙을 적용한 혼합형이다. 제안한 혼합형 학습규칙을 이용한 신경회로망의 유용성을 확인하기 위하여 단일관절 매니플레이터를 이용하여 추종제어에 대한 시뮬레이션을 하여 기존의 역전파 알고리즘을 이용한 직접적응 제어 방식과 제어성능을 비교 검토한 결과 다음과 같은 특성을 확인하였다.

  • PDF

롱샷 무인기를 활용한 유무인 협업 공대공 전술 개발 (Manned-Unmanned Teaming Air-to-Air Combat Tactic Development Using Longshot Unmanned Aerial Vehicle)

  • 유승훈;박명환;황성인;설현주
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.64-72
    • /
    • 2021
  • Manned-unmanned teaming can be a very promising air-to-air combat tactic since it can maximize the advantage of combining human insight with the robustness of the machine. The rapid advances in artificial intelligence and autonomous control technology will speed up the development of manned-unmanned teaming air-to-air combat system. In this paper, we introduce a manned-unmanned teaming air-to-air combat tactic which is composed of a manned aircraft and an UAV. In this tactic, a manned aircraft equipped with radar is functioning both as a sensor to detect the hostile aircraft and as a controller to direct the UAV to engage the hostile aircraft. The UAV equipped with missiles is functioning as an actor to engage the hostile aircraft. We also developed a combat scenario of executing this tactic where the manned-unmanned teaming is engaging a hostile aircraft. The hostile aircraft is equipped with both missiles and radar. To demonstrate the efficiency of the tactic, we run the simulation of the scenario of the tactic. Using the simulation, we found the optimal formation and maneuver for the manned-unmanned teaming where the manned-unmanned teaming can survive while the hostile aircraft is shot-downed. The result of this study can provide an insight to how manned aircraft can collaborate with UAV to carry out air-to-air combat missions.

Takagi-Sugeno 퍼지모델에 기반한 반복학습제어 시스템: 이차원 시스템이론을 이용한 접근방법 (Takagi-Sugeno Fuzzy Model-Based Iterative Learning Control Systems: A Two-Dimensional System Theory Approach)

  • 추준욱;이연정;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.385-392
    • /
    • 2002
  • This paper introduces a new approach to analysis of error convergence for a class of iterative teaming control systems. Firstly, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established if the form of T-S fuzzy model. We analyze the error convergence in the sense of induced L$_2$-norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative teaming controller design problem to guarantee the error convergence can be reduced to the linear matrix inequality problem. This method provides a systematic design procedure for iterative teaming controller. A simulation example is given to illustrate the validity of the proposed method.

이족로봇용 신경망 지능 제어기 (The Intelligent Controller for Biped Robot Using Neural Network)

  • 김성주;김용택;고재양;서재용;전홍태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2573-2576
    • /
    • 2003
  • This paper proposes the controller for biped robot using intelligent control algorithm. The main purpose of this paper is to design the robot controller using Hierarchical Mixture of Experts(HME). The neural network direct control method will be applied to the control scheme for the biped robot and neural network will learn the dynamics of biped robot. The teaming scheme using a intelligent controller to biped robot is developed. The teaming scheme uses a HME controller combined with a inverse biped robot model. The controller provides the control signals at each control time instant. Simulation results are reported for a seven-link biped robot.

  • PDF