race detection using a boosting based algorithm requires a very large size of face and nonface data. In addition, the fact that there always occurs a need for adding additional training data for better detection rates demands an efficient incremental teaming algorithm. In the design of incremental teaming based classifiers, the final classifier should represent the characteristics of the entire training dataset. Conventional methods have a critical problem in combining intermediate classifiers that weight updates depend solely on the performance of individual dataset. In this paper, for the purpose of application to face detection, we present a new method to combine an intermediate classifier with previously acquired ones in an optimal manner. Our algorithm creates a validation set by incrementally adding sampled instances from each dataset to represent the entire training data. The weight of each classifier is determined based on its performance on the validation set. This approach guarantees that the resulting final classifier is teamed by the entire training dataset. Experimental results show that the classifier trained by the proposed algorithm performs better than by AdaBoost which operates in batch mode, as well as by ${Learn}^{++}$.
Online collaborative teaming, which has emerged as a new type of education in knowledge-based society, is being discussed actively in the areas of action learning at companies and project-based learning and inquiry-based learning at schools. It regards as an effective method for improving learners practical and highly advanced problem solving abilities, and for stimulating their absorption into learning through pursuing common goals of learning together. Different from individual learning, however, collaborative learning involves complicated processes such as organizing teams, setting common goals, performing tasks and evaluating the outcome of team activities .Thus, it is difficult for a teacher to promote and evaluate the whole process of collaborative learning, and it is necessary to develop systems to support collaborative learning. Therefore, in order to monitor and promote interaction among learners in the process of collaborative learning, the present study developed an extensible collaborative teaming supporting agent (ECOLA) in online learning environments.
In general, the extraction and recognition of identifier is very hard work, because the scale or location of identifier is not fixed-form. And, because the provided image is contained by camera, it has some noises. In this paper, we propose methods for automatic detecting edge using canny edge mask. After detecting edges, we extract regions of identifier by detected edge information's. In regions of identifier, we extract each identifier using contour tracking algorithm. The self-generation supervised learning algorithm is proposed for recognizing them, which has the algorithm of combining the enhanced ART1 and the supervised teaming method. The proposed method has applied to the container images. The extraction rate of identifier obtained by using contour tracking algorithm showed better results than that from the histogram method. Furthermore, the recognition rate of the self-generation supervised teaming method based on enhanced ART1 was improved much more than that of the self-generation supervised learning method based conventional ART1.
The support vector machine, as a binary classifier, is known to surpass the other classifiers only in binary classification problems through the various experiments. Even though its theory is based on the maximal margin classifier, the support vector machine approach cannot be easily extended to the multi-classification problems. In this paper, we review the extension techniques of the support vector machine toward the multi-classification and do the performance comparison. Depending on the data decomposition of the training data, the support vector machine is easily adapted for a multi-classification problem without modifying the intrinsic characteristics of the binary classifier. The performance is evaluated on a collection of the benchmark data sets and compared according to the selected teaming strategies, the training time, and the results of the neural network with the backpropagation teaming. The experiments suggest that the support vector machine is applicable and effective in the general multi-class classification problems when compared to the results of the neural network.
Computers have been increasingly recognized as tools for teaming, in addition to supporting industrial works. Such advantages e-Learning have as teaming at any time and place, distribution and management of standardized contents, mentoring with learners, immediate feed-backs, and dynamic learning have been applied in a variety of divisions. Despite of the researches and interests, the study on the different views between teachers who design and operate e-learning and students who receive lessons hasn't been enough. So it studied the recognition of middle school teachers and students on the e-Learning. <중략>The research result showed that there were similarity in the views between teachers and students on the concept of e-Learning. Many teachers and students have experienced the e-Learning directly or indirectly. Teachers and students showed similar opinions on the beforehand education and preferred subjects of the e-Learning. But the students required fast and immediate feedback of the teachers. Teachers and students showed similar opinions on the utilization of multimedia components to achieve the goal of education. But teachers thought that immediate feedback was important. The students thought it important to control the degree of difficulty. It suggests a way to activate the e-Learning of middle school efficiently with the research result.
Kim, Jeong-Hun;Seo, Wonik;Choi, Keeyoung;Ryoo, Chang-Kyung
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.47
no.9
/
pp.678-685
/
2019
Due to the changes in future war environment and the technological development of the aviation weapon system, it is required to carry out on the analysis of the Manned-Unmanned aerial vehicles Teaming(MUM-T). Conventional manned-unmanned aerial vehicles operate according to the air strategy missions and vehicles' performance. In this paper, we analyze conventional aerial vehicle's mission to derive various kinds of missions of MUM-T after analyzing the unmanned aircraft systems roadmap issued by US DoD and the air strategy of US Air Force. Next, we identify the basic operations of the vehicles to carry out the missions, select the MUM-T based Suppression of Enemy Air Defense missions(SEAD), and analyze the procedure for performing the missions step by step. In this paper, we propose a procedure of the mission in the context of physical space and timeline for the realization of the concept of MUM-T.
Park, Myunghwan;Oh, Jihyun;Kim, Cheonyoung;Seol, Hyeonju
Journal of the Korea Institute of Military Science and Technology
/
v.24
no.6
/
pp.664-675
/
2021
Air force air-to-air combat tactics are occurring at a high speed in three-dimensional space. The specification of the tactics requires dealing with a quite amount of information, which makes it a challenge to accurately describe the maneuvering procedure of the tactics. The specification of air-to-air tactics using natural languages is not suitable because of the intrinsic ambiguity of natural languages. Therefore, this paper proposes an approach of using UML Sequence Diagram to describe air-to-air combat tactics. Since the current Sequence Diagram notation is not sufficient to express all aspects of the tactics, we extend the syntax of the Sequence Diagram to accommodate the required features of air-to-air combat tactics. We evaluate the applicability of the extended Sequence Diagram to air-to-air combat tactics using a case example, that is the manned-unmanned teaming combat tactic. The result shows that Sequence Diagram specification is more advantageous than natural language specification in terms of readability, conciseness, and accuracy. However, the expressiveness of the Sequence Diagram is evaluated to be less powerful than natural language, requiring further study to address this issue.
Sang Keun Cho;Andrii Zhytko;Ki Won Kim;In Keun Son;Sang Hyuk Park
The Journal of Korea Robotics Society
/
v.18
no.3
/
pp.308-315
/
2023
Russia invaded Ukraine in February 2022. Many military experts predicted that Russia could defeat Ukraine within a week, but the Ukraine-Russia War has not been going as expected. Indeed, Ukraine military has been defending well and seems to fight more efficiently than Russian military. There are many reasons for this unexpected situation and one apparent thing is due to artificial intelligence (AI) technologies. This study focused on AI-enabled combats that the Armed Forces of Ukraine has carried out around Siverskyi Donets River, the Crimean Peninsula, and suburbs of Kyiv. For more systematic analysis, the revolution in military affairs (RMA) theory was applied. There are four significant implications inferred by studying current Ukraine-Russia War. First, AI technologies are effective even in the current status and seems to be more influential. Second, hyper-connected network by satellite communications must be needed to enhance the AI weapon effects. Third, military AI technologies should be based on the civil-military cooperation to keep up with pace of technological innovation. Fourth, AI ethics in military should be seriously considered and established in the use of AI technologies. We expect that this study could help ROK Armed Forces to be modernized in the revolutionary fashion, especially for manned and unmanned teaming (MUM-T) system.
Sang-Keun Cho;Eui-chul Shin;Jun-Woo Kim;In-Chan Kim;Ki-Won Kim;Sang-Hyuk Park
The Journal of the Convergence on Culture Technology
/
v.9
no.1
/
pp.413-418
/
2023
This study presents the direction of the Republic of Korea Army in the future by examining the Manned and Unmanned Teaming(MUMT) Systems of the Military Advanced Countries of the United States, Israel, and France. In this study, the current status of the U.S. Ground Forces' 'Squad-X' program, the Israeli Ground Forces' Digital Army Program (DAP), and the French Army's Scorpion program were examined. Next, it was followed by a discussion of The Combat concept, a way of fighting in the future battlefield, with the development trend of a complex Combat system with various weapon systems supporting it. Finally, based on this, the direction of the development of MUMT system, which the Republic of Korea Army should engage in in the future, was presented as a conclusion. Since such MUMT system of advanced military forces are being developed in a secret manner, continuous longitudinal research needs be conducted.
Jung, Byungho;Oh, Jihyun;Seol, Hyeonju;Hwang, Seong In
Journal of Korean Society of Industrial and Systems Engineering
/
v.45
no.1
/
pp.10-19
/
2022
Recently, the Defense Advanced Research Projects Agency(DARPA) in the United States is studying a new concept of war called Mosaic Warfare, and MUM-T(Manned-Unmanned Teaming) through the division of missions between expensive manned and inexpensive unmanned aircraft is at the center. This study began with the aim of deriving the priority of autonomous functions according to the role of unmanned aerial vehicles in the present and present collaboration that is emerging along with the concept of mosaic warfare. The autonomous function of unmanned aerial vehicles between the presence and absence collaboration may vary in priority depending on the tactical operation of unmanned aerial vehicles, such as air-to-air, air-to-ground, and surveillance and reconnaissance. In this paper, ACE (Air Combat Evaluation), Skyborg, and Longshot, which are recently studied by DARPA, derive the priority of autonomous functions according to air-to-air collaboration, and use AHP analysis. The results of this study are meaningful in that it is possible to recognize the priorities of autonomous functions necessary for unmanned aircraft in order to develop unmanned aerial vehicles according to the priority of autonomous functions and to construct a roadmap for technology implementation. Furthermore, it is believed that the mass production and utilization of unmanned air vehicles will increase if one unmanned air vehicle platform with only essential functions necessary for air-to-air, air-to-air, and surveillance is developed and autonomous functions are expanded in the form of modules according to the tactical operation concept.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.