• Title/Summary/Keyword: teaching-learning model

Search Result 1,119, Processing Time 0.033 seconds

A Study on the Development of a Teaching-learning Model for Active Learning in Engineering Education (공학교육에서의 Active Learning 교수-학습 모형 개발 연구)

  • Kim, Na-Young;Kang, Donghee
    • Journal of Engineering Education Research
    • /
    • v.22 no.6
    • /
    • pp.12-20
    • /
    • 2019
  • The purpose of this study is to development of a teaching-learning model for active learning in engineering education. For this, the adequacy between educational objectives and active learning activities is verified and furthermore an "active learning teaching-learning model" is suggested. This suggested teaching-learning model is expected to supplement weakness of traditional lecture-type teaching-learning activity. Based on the literature review, first, the representative activities of active learning were derived. there are twenty active learning activities, which compose of five of individual learning activity, five of pair-learning activity and five of group-learning activity, and five of alternative- learning activity. In addition, a survey on adequacy between designed active learning activities and learning outcomes were conducted to ten educational experts. Lawshe's content validity calculation method was applied to analyze the validity of this study. Second, five teaching-learning principles, such as thinking, interaction, expression, reflection, and evaluation were derived to develop an "active learning teaching-learning model" which supplements lecture-type classes and then the "TIERA teaching-learning model" which consists of five stages was designed. Finally, based on the survey on educational experts, adequate active learning activities were proposed to apply in each stage of the "TIERA teaching-learning model" and as a result the TIERA model's active learning activities were developed. The result of this study shows that some activities of active learning are appropriate to induce high cognitive learning skills from the learners even in traditional lecture-type classrooms and therefore this study suggests meaningful direction to new paradigm of teaching-learning for engineering education. This study also suggests that instructors of engineering education can turn their traditional teaching-learning activities into dynamic learning activities by utilizing "active learning teaching-learning model".

The Identification and Comparison of Science Teaching Models and Development of Appropriate Science Teaching Models by Types of Contents and Activities (과학수업모형의 비교 분석 및 내용과 활동 유형에 따른 적정 과학수업모형의 고안)

  • Chung, Wan-Ho;Kwon, Jae-Sool;Choi, Byung-Soon;Jeong, Jin-Woo;Kim, Hyo-Nam;Hur, Myung
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.1
    • /
    • pp.13-34
    • /
    • 1996
  • The purpose of this study is to develop appropriate science teaching models which can be applied effectively to relevant situations. Five science teaching models; cognitive conflict teaching models, generative teaching model, learning cycle teaching model, hypothesis verification teaching model and discovery teaching model, were identified from the existing models. The teaching models were modified and in primary and secondary students using a nonequivalent pretest-posttest control group design. Major findings of this study were as follows: 1. For teaching science concepts, three teaching models were found more effective; cognitive conflict teaching model, generative teaching model and discovery teaching model. 2. For teaching inquiry skills, two teaching models were found more effective; learning cycle teaching model and hypothesis verification teaching model. 3. For teaching scientific attitudes, two teaching models were found more effective; learning cycle teaching models and discovery teaching model. Each teaching model requires specific learning environment. It is strongly suggested that teachers should select a suitable teaching model carefully after evaluating the learning environment including teacher and student variables, learning objectives and curricular materials.

  • PDF

Development Method for Teaching-Learning Plan of Computer Education using Concrete Instructional Model Framework

  • Lee, Jaemu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.129-135
    • /
    • 2017
  • This research is to identify an easy and effective method of teaching-learning plan. The teaching-learning plan is a blue_print applied for designing effective lessons. However, most of the teachers regard it as a difficult and inefficient job. This study proposed the concrete instructional model framework as a tool to develop the teaching-learning plan easily and effectively. The concrete instructional model framework will represent a decomposed instructional strategy applied for each step of the instructional model developed by educational researchers. This method is applied to develop a computer teaching-learning plan. Therefore, the proposed method will expand an easier teaching-learning plan. Furthermore, the proposed method develops a teaching-learning plan with fluent content in detail based on low-level instruction strategies applied in the concrete instruction model framework.

The Development of 4M Learning Cycle Teaching Model Based on the Integrated Mental Model Theory: Focusing on the Theoretical Basis & Development Procedure (통합적 정신모형 이론에 기반한 4M 순환학습 수업모형 개발: 이론적 배경과 개발과정을 중심으로)

  • Park, Ji-Yeon;Lee, Gyoung-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.5
    • /
    • pp.409-423
    • /
    • 2008
  • Many researches have reported that it is difficult to solve students' difficulties in learning science with teaching models focused on certain aspects because of various reasons. Recently, in science education research, the integrated perceptive has been to put emphasis on understanding complex situations of real teaching and learning. In this research context, the integrated mental model theory that were considered as a whole factor related to learning has been studied by integrating previous studies that related to students' conceptions and learning in various fields. Thus, it is needed that the teaching model be based on the integrated mental model theory to help students to solve their difficulties. The purpose of this research was to develop a new teaching model based on the integrated mental model theory to address this issue. We reviewed current studies on student difficulties and teaching models. After this, we developed 4M learning cycle teaching model. In this paper, we described the process of developing a new teaching model and discussed how to apply this teaching model to the practices. We also discussed the effects of 4M learning cycle teaching model based on the integrated mental model theory in learning science with its implications.

A Study on the Development of a Mathematics Teaching and Learning Model for Meta-Affects Activation (수학 교과에서 메타정의를 활성화하는 교수·학습 모델 개발)

  • Son, Bok Eun
    • East Asian mathematical journal
    • /
    • v.38 no.4
    • /
    • pp.497-516
    • /
    • 2022
  • In this study, we tried to devise a method to activate meta-affect in the aspect of supporting mathematics teaching and learning according to the need to find specific strategies and teaching and learning methods to activate learners' meta-affect in mathematics subjects, which are highly influenced by psychological factors. To this end, the definitional and conceptual elements of meta-affect which are the basis of this study, were identified from previous studies. Reflecting these factors, a teaching and learning model that activates meta-affect was devised, and a meta-affect activation strategy applied in the model was constructed. The mathematics teaching and learning model that activates meta-affect developed in this study was refined by verifying its suitability and convenience in the field through expert advice and application of actual mathematics classes. The developed model is meaningful in that it proposed a variety of practical teaching and learning methods that activate the meta-affect of learners in a mathematical learning situation.

A Case Study on the Implement of Teaching and Learning Models aiming at Training Creative Engineers: focused on the SICAT

  • KWON, Sungho;OH, Hyunsook;KIM, Sungmi
    • Educational Technology International
    • /
    • v.11 no.1
    • /
    • pp.27-46
    • /
    • 2010
  • The purpose of this paper is to apply the newly developed SICAT teaching and learning model to the actual scene of teaching and learning and draw a point of discussion for utilizing teaching and learning model, by uncovering the satisfaction of students and the inhibiting/facilitating elements when using the model. SICAT(Scientific Inquiry and Creative Activity with Technology; from here on SICAT), a teaching and learning model custom-built for engineering education, was developed, as more and more people paid attention to the demand for creative engineers. It was developed from the basis of PBL(Problem Based Learning), includes three sub-types which can be applied to the actual theory, design, and experimentation fields within engineering education. The three sub-types, which are ARDA(Analysis-Reasoning Activity & Discussion-Argumentation Activity), CoCD (Collaboration Activity & Capstone Design Activity), and ReSh(Reflection Activity & Sharing Activity), respectively support deductive and argumentation activities, creative design and collaboration activities, and retrospection and sharing activities. However, no research has been conducted to investigate whether or not there are inhibiting or facilitating elements in the application procedure, or what the rate of satisfaction for students is, when applying the SICAT model, which was newly developed to innovate existing engineering education, to the actual site of teaching and learning. Therefore, this research applied three types of SICAT teaching and learning models to the theory, design, and experimentation classes at the department of materials science and engineering at Hanyang University for eight weeks. After application, the students, teachers and tutors were surveyed and interviewed, and then the results analyzed in order to uncover inhibiting/facilitating elements and the rate of satisfaction. The satisfaction rate of students from the SICAT teaching and learning model was 3.78(in a perfect score of 5: The A type-3.65, The C type-3.80, The R type-3.90), and inhibiting/facilitating elements were drawn from the aspects of learning activities, support system. In conclusion, they can be contributed for implications of SICAT teaching and learning model universal use at engineering education in University.

The Design of a Smart Education Teaching-Learning Model for Pre-Service Teachers (예비 교사를 위한 스마트교육 교수 학습 모형 설계)

  • Jeon, Mi-Yeon;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.247-251
    • /
    • 2014
  • As smart education increases the demand for new teaching-learning methods, teacher training colleges need to systematize smart education teaching-learning methods for pre-service teachers. This study designed a smart education teaching-learning model, which is applicable to pre-service teachers, by analyzing the smart education teaching-learning types for primary and secondary schools at national and international levels and by analyzing the Creation Teaching Learning Assessment (CTLA) model. The goal of smart education is to reinforce capability of learners. The smart education teaching-learning model designed to help pre-service teachers reinforce their smart literacy is suitable for reinforcing capability of future learners to receive smart education. The smart education teaching-learning model in this study was designed as a 15-week teaching plan applicable to pre-service teachers at teacher training colleges. In the teaching-learning model, problem-based learning (PBL), a situated learning model, and cooperative learning model were applied to weekly instructions. Further research should be conducted to prove its effectiveness in allowing pre-service teachers to reinforce their smart literacy by making gradual improvement in this model and to develop and test smart education teaching-learning models constantly.

  • PDF

Development of a Teaching/Learning Model for the Mathematical Enculturation of Elementary and Secondary School Students

  • Kim, Soo-Hwan;Lee, Bu-Young;Park, Bae-Hun
    • Research in Mathematical Education
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 1997
  • The purpose of this study is to develop a teaching/learning model for the mathematical enculturation of elementary and secondary school students. It is clear that the development of teaching and learning in the classroom is essential for the realization of global innovations in mathematics education. Research questions for this purpose are as follow: (1) What can be learned from literatures reviews of the socio-cultural perspective on mathematics education, and of ethnomathematics as a mathematics intrinsic to cultural activities? (2) What is the direction of teaching and learning from the perspective of mathematical enculturation? (3) What is the teaching /learning model for mathematical enculturation? (4) What is the instructional exemplification based on the developed model? This study promotes the establishment of mathematics education theory from the review of literatures on the socio-cultural perspective, the development of a teaching/learning model, and the instructional exemplification based on the developed model.

  • PDF

Strategic Model Design based on Core Competencies for Innovation in Engineering Education

  • Seung-Woo LEE;Sangwon LEE
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.141-148
    • /
    • 2023
  • As the direction of education in the fourth industry in the 21st century, convergence talent education that emphasizes the connection and convergence between core competency-based education and academia is emerging to foster creative talent. The purpose of this paper is to present the criteria for evaluating the competency of learning outcomes in order to develop a strategic model for innovation in engineering teaching-learning. In this paper, as a study to establish the direction of implementation of convergence talent education, a creative innovation teaching method support system was established to improve the quality of convergence talent education. Firstly, a plan to develop a teaching-learning model based on computing thinking. Secondly, it presented the development of a teaching-learning model based on linkage and convergence learning. Thirdly, we would like to present educational appropriateness and ease based on convergence learning in connection with curriculum improvement strategies based on computing thinking skills. Finally, we would like to present a strategic model development plan for innovation in engineering teaching-learning that applies the convergence talent education program.

Designing the Content-Based Korean Instructional Model Using the Flipped Learning

  • Mun, Jung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.6
    • /
    • pp.15-21
    • /
    • 2018
  • The purpose of this study is to design a Content-based Korean Class model using Flipped learning for foreign students. The class model that presents on this paper will lead the language learning through content learning, also it will be enable the student more active and to have an initiative in the class. Prior to designing a Content-based Korean Class model using Flipped learning, the concepts and educational significance and characteristics of flip learning were reviewed through previous studies. Then, It emphasizes the necessity of teaching method adapting Flipped learning to Content-based teaching method in Korean language education. It also suggests standards and principles of composition in Contents-based teaching method using Flipped learning. After designing the instructional model based on the suggested standards and principles, it presents a course of instruction about how learning methods, contents and activities should be done step by step. The Content-based Korean class model using the Flipped learning will be an alternative approach to overcome the limitations of teacher-centered teaching methods and lecture-teaching methods which are the dominant of present classroom environment.