• Title/Summary/Keyword: tea catechin

Search Result 195, Processing Time 0.033 seconds

Physicochemical Properties of Shade-cultivated Powdered Green Teas (차광재배 가루녹차의 이화학적 품질 특성)

  • Lee, Lan-Sook;Park, Jong-Dae;Cha, Hwan-Soo;Kim, Jong-Tae;Kim, Sang-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.719-722
    • /
    • 2011
  • The Daecha-12 and Yabukita varieties of powdered green teas were grown under 85% shade-cultivated condition, and their physicochemical properties were analyzed. Total catechin content was not significantly different but, non-gallated catechin content in Daecha-12 was significantly higher than that in Yabukita. Theanine (32%), caffeine (14%), lutein (15%) and total chlorophyll (28%) levels were significantly higher in Daecha-12 than those in Yabukita. The results of a color analysis showed that the lightness L-value of Yabukita was higher than that of Daecha-12 but, that the greenness negative a-value and b-values of Daecha-12 were higher than those of Yabukita. The Daecha-12 cultivar had lower catechin content but higher content of theanine, caffeine, theobromine, lutein, chlorophyll, and a negative a-value than those of the Yabukita cultivar. Thus, the Daecha-12 cultivar is suitable to prepare a high-quality powdered green tea product.

Development of Green Tea Beverage with Organic Tea Leaves (유기농 녹차잎을 이용한 녹차음료의 개발)

  • An, Mi-Kyoung;Ahn, Jun-Bae;Lee, Kwang-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.485-490
    • /
    • 2008
  • In this study, organic tea leaves were characterized with the aim of developing an organic beverage process. The green tea leaves grown using organic farming techniques were collected in Haenam, Korea. Catechins in green tea leaves were extracted by chloroform and ethyl acetate and these were then analyzed quantitatively and qualitatively by HPLC (high pressure liquid chromatography). The color and pH values of the green tea extracts were also measured. The catechin levels of April-harvested, May-harvested and June-harvested, semi-fermented leaves at 0.5% were 66.24, 29.19, 57.11, and 5.27 ${\mu}g/mL$, respectively. Among the detected catechins, the level of (-)-epigallocatechin gallate was the highest while that of (-)-epigallocatechin was not detected. The June-harvested leaves were selected as raw material for development of the green tea beverage, based on the levels of catechins, economic viability and yield of tea extract. As the level of extract increased, the levels of catechins of 0.1, 0.2, 0.5% also increased by 1.5, 11.78 and 41.01 times. From the results of the sensory evaluation of June-harvested leaf-extract, the sensory score of color was the highest in 0.1%, while the flavor and overall quality were the highest in 0.2%.

Effect of Coffee-like Green Tea Preparation on Cytotoxicity of Human Cancer and Normal Cells (Coffee-like green tea의 인체암세포 및 정상세포에 대한 독성)

  • Moon, Yean Guy;Kwon, Jung Min;Kim, Jong Cheol;Park, Han Min;Cho, Yong Un;Jung, Kwan Ju;Ha, Yeong Lea
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.84-94
    • /
    • 2013
  • The cytotoxicity of coffee-like green tea (CLGT) was determined in a human breast cancer cell line, MCF-7; a human prostate cancer cell clone, PC-3; a human neuroblastoma cell line, SK-N-SH; and a rat cardiomyoblast cell line, H9c2, with reference to green tea leaves (GTL). The CLGT was prepared by roasting the GTL for 60 min at $240^{\circ}C$ in a temperature-controlled frying pan. The CLGT preparation imitated the flavor and taste characteristics of coffee fairly well according to sensory analysis. The CLGT preparation had no adverse cytotoxic effects on the cancer cells or the normal cells compared to GTL. No significant change in the antioxidant activity was seen in the CLGT preparation compared to that of GTL. The amount of total protein, sugar, and phenolic compounds was reduced in the preparation relative to those in GTL, a fact that might explain the coffee-like flavor and/or taste characteristics of the CLGT preparation. These results suggest that CLGT prepared by roasting GTL for 60 min at $240^{\circ}C$ does not show any adverse effects on cancer cells and normal cells compared to GTL. They imply that CLGT could be safe for human consumption.

Green Tea (-)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes

  • Lee, Mak-Soon;Lee, Seohyun;Doo, Miae;Kim, Yangha
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor ${\gamma}$ coactivator $(PGC)-1{\alpha}$ is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on $PGC-1{\alpha}$ mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control $PGC-1{\alpha}$ expression, the promoter activity levels of $PGC-1{\alpha}$ were examined. The $PGC-1{\alpha}$ mRNA level was measured using quantitative real-time PCR. The -970/+412 bp of $PGC-1{\alpha}$ promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the $PGC-1{\alpha}$ mRNA levels significantly with $10{\mu}mol/L$ of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. $PGC-1{\alpha}$ promoter activity was also increased by treatment with $10{\mu}mol/L$ of EGCG in both cells. These results suggest that EGCG may induce $PGC-1{\alpha}$ gene expression, potentially through promoter activation.

Development of Mulberry-leaf Tea Containing γ-Aminobutyric Acid (GABA) by Anaerobic Treatments (무산소 처리에 의한 감마아미노뷰티르산(γ-Aminobutyric Acid) 함량이 높은 뽕잎차의 제조)

  • Lee, Seon-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.652-657
    • /
    • 2015
  • To produce mulberry-leaf tea abundant in ${\gamma}$-aminobutyric acid (GABA), mulberry leaves were subjected to two distinct anaerobic conditions ($N_2$ and vacuum) for 12 h before the manufacturing process. Subsequently, changes in the GABA content as well as that of other components were measured. In anaerobically treated mulberry leaves, GABA content markedly increased by 436-472% compared with the control, while the glutamic acid content decreased. However, few changes were observed in the contents of the general components (moisture, carbohydrate, lipid, protein, and ash) and water-soluble solids. Free sugar, catechin, and total phenol content decreased after anaerobic treatment. However, the sensory test scores were not different between the control and anaerobically-treated samples. Consequently, tea products, manufactured post nitrogen gas or vacuum treatment of leaves after harvest, showed functional properties without sensory loss.

Green Tea Extract (CUMS6335) Inhibits Catecholamine Release in the Perfused Adrenal Medulla of Spontaneously Hypertensive Rats

  • Lim, Dong-Yoon
    • Natural Product Sciences
    • /
    • v.13 no.1
    • /
    • pp.68-77
    • /
    • 2007
  • The aim of the present study was to examine the effects of green tea extract (CUMS6335) on the release of CA evoked by cholinergic stimulation and direct membrane-depolarization in the perfused model of the adrenal gland isolated from the spontaneously hypertensive rats (SHRs), and to establish the mechanism of action. Furthermore, it was also to test whether there is species difference between animals, and between CUMS6335 and EGCG, one of biologically the most powerful catechin compounds found in green tea. CUMS6335 $(100\;{\mu}g/ml)$, when perfused into an adrenal vein for 60 min, time-dependently inhibited the CA secretory responses evoked by ACh (5.32mM), high $K^+$(56 mM), DMPP $(100\;{\mu}M)$, and McN-A-343 $(100\;{\mu}M)$ from the isolated perfused adrenal glands of SHRs. However, CUMS6335 itself did fail to affect basal catecholamine output. Also, in adrenal glands loaded with CUMS6335 $(100\;{\mu}g/ml)$, the CA secretory responses evoked by Bay-K-8644 $(10\;{\mu}M)$ and cyclopiazonic acid $(10\;{\mu}M)$ were also inhibited in a relatively time-dependent fashion. However, in the Presence of EGCG $(8.0\;{\mu}g/ml)$ for 60 min, the CA secretory response evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were not affected except for last period. Collectively, these results indicate that CUMS6335 inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by direct membrane-depolarization from the perfused adrenal gland of the SHR. It seems that this inhibitory effect of CUMS6335 is exerted by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself. It seems likely that there is much difference in mode of the CA-releasing action between CUMS6335 and EGCG.

Effects of Various Concentrations of Natural Materials on the Manufacturing of Soybean Curd (첨가농도를 달리한 천연물첨가 두부의 제조특성)

  • Choi, You-One;Chung, Hun-Sik;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.7 no.3
    • /
    • pp.256-261
    • /
    • 2000
  • Carrot, cucumber, spinach which contain carotenoid and chlorophyll pigment, and green tea which contain catechin were selected to natural materials. Although the yield of soybean curd with added natural materials were below than non-added soybean curd. Also, the additive natural materials in the soybean curd had no effect to the texture in soybean curd. The optimum concentration of added natural materials were high acceptability opposed to the non-containing soybean curd. The optimum concentration of added natural materials soybean curds was obtained : 4% of carrot, 10% of cucumber, 1.0% of spinach and 0.05% of green tea powder. And soybean curd with spinach and green tea addition had a longer shelf life because it prevented growing of bacteria in the early stage. Therefore, it could be possible to prevent the deterioration of soybean curd with added natural materials.

  • PDF

Evaluation for Long-term Stability of EGCG Rich Green Tea Extract (EGTE) (신규 건강기능식품소재 'EGCG 고함유 녹차추출물(EGTE)'의 장기안정성 평가)

  • Cheon, Se In;Heo, Eun Ji;Yoon, Min Ji;Choi, Sang Un;Ryu, Geon-Seek;Ryu, Shi Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.4
    • /
    • pp.328-335
    • /
    • 2018
  • 'EGCG(epigallocatechin gallate) rich Green Tea extract(EGTE)' was prepared by a convenient chromatographical manner using water and alcohol which was regarded as the most suitable and appropriate process for food manufacturing. The EGCG content in EGTE was estimated above 97%. Analysis of polyphenol components in green tea, i.e., catechin(C), epigallocatechin(EGC), epicatechin(EC), epigallocatechin gallate(EGCG), epicatechin gallate(ECG) and caffeine was performed by HPLC. The optimized HPLC method exhibited a good linearity of calibration curve, accuracy and precision. The long-term stability evaluation of EGTE was carried out with a powdered formulation and solution formulation by estimating the color change and measuring the EGCG content by HPLC analysis for one year. The EGCG content of the powdered EGTE stored in a transparent bottle at room temperature was retained over 97% at the end of the experimental period. The EGCG content of 0.1% water solution of EGTE stored in a transparent bottle at RT were observed to decrease below 30%, whereas that stored at $2^{\circ}C$ retained over 70%, respectively. These results suggested that a powdered formulation could be recommended for the commercialized nutraceutical product of EGTE rather than a solution formulation.

Dietary Tea Catechin Inclusion Changes Plasma Biochemical Parameters, Hormone Concentrations and Glutathione Redox Status in Goats

  • Zhong, Rongzhen;Xiao, Wenjun;Ren, Guopu;Zhou, Daowei;Tan, Chuanyan;Tan, Zhiliang;Han, Xuefeng;Tang, Shaoxun;Zhou, Chuanshe;Wang, Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1681-1689
    • /
    • 2011
  • The beneficial effects of tea catechins (TCs) are related not only to their antioxidant potential but also to the improvement of animal meat quality. In this study, we assessed the effects of dietary TC supplementation on plasma biochemical parameters, hormone responses, and glutathione redox status in goats. Forty Liuyang goats were randomly divided into four equal groups (10 animals/group) that were assigned to four experimental diets with TC supplementation at 4 levels (0, 2,000, 3,000 or 4,000 mg TC/kg DM feed). After a 60-day feeding trial, all goats were slaughtered and sampled. Dietary TC treatment had no significant effect on blood biochemical parameters, however, low-density lipoprotein cholesterol (p<0.001), triglyceride (p<0.01), plasma urea nitrogen (p<0.01), and glucose (p<0.001) decreased and total protein (p<0.01) and albumin (p<0.05) increased with the feeding time extension, and day 20 was the turning point for most of changes. Interactions were found in glutathione (p<0.001) and the ratio of reduced and oxidized glutathione (p<0.05) in whole blood between treatment and feeding time. Oxidized glutathione in blood was reduced (p<0.05) by 2,000 mg TC/kg feed supplementation, and a similar result was observed in longissimus dorsi muscle. Though plasma glutathione peroxidase (p<0.01) and glutathione reductase (p<0.05) activities were affected by treatment and feeding time interactions, and glutathione S-transferases activity increased with feeding day extension, no changed values appeared in longissimus dorsi muscle. In conclusion, dietary TC supplementation affected the concentrations of some blood metabolites and accelerated GSH depletion in the blood of goats. In terms of less high-density lipoprotein cholesterol, the highest insulin and IGF-I concentrations, the highest ratio of reduced and oxidized glutathione in plasma, the dosage of 2,000 mg TC/kg feed might be desirable for growing goats to prevent glutathione depletion and keep normal physiological metabolism.

Induction of Apoptosis by (-)-epigallocatechin-3-gallate in HL-60 Cells (인체 혈액암세포주(HL-60)에서 (-)-epigallocatechin-3-gallate에 의한 Aapoptosis 유도)

  • 이해미;김연정;박태선
    • Journal of Nutrition and Health
    • /
    • v.36 no.4
    • /
    • pp.382-388
    • /
    • 2003
  • (-)-Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound found in peen tea leaves, and has been known to be one of the most potent catechin species which inhibits cell growth most possibly through an apoptotic cell death. We investigated the apoptotic activity of (-)-EGCG on the human myeloid leukemia cell line, HL-60. Our results of MTT test indicated that (-)-EGCG had a significant antiproliferation effect in HL-60 cells with $IC_{50}$/ (50% inhibition concentration) value of 65 $\mu$M. Giemsa statining of HL-60 cells treated with (-)-EGCG (100 $\mu$M) for 6hrs showed a typical apoptosis-specific morphological change including shrinkage of the cytoplasm, membrane blobbing and compaction of the nuclear chromatin. The DNA fragmentation was observed from the agarose gel electrophoresis of cells treated with (-)-EGCG for 3hrs or longer, and was progressed to a greater degree as treatment time increases. Treatment of the cells with (-)-EGCG (100 $\mu$M) resulted in a rapid release of mitochondrial cytochrome c into the cytosol, and a subsequent cleavage of caspase-3 to an active form in a treatment-time dependent manner. (-)-EGCG (100 $\mu$M) also stimulated proteolytic cleavage of poly-(ADP-ribose) polymerase (PARP) to an active form in HL-60 cells. Tlken together, (-)-EGCG appears to induce the apoptosis in human myeloid leukemia cells via a caspase-dependent pathway. These results suggest the possible application of (-)-EGCG, the major active compound in green tea, as an antiproliferative agent for cancer prevention.