• Title/Summary/Keyword: targeted sequencing

Search Result 122, Processing Time 0.021 seconds

Exome Sequencing in Mendelian Disorders (엑솜 염기서열 분석 방법을 이용한 단일유전자질환의 원인 유전자 발굴)

  • Lee, Jong-Keuk
    • Journal of Genetic Medicine
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2010
  • More than 7,000 rare Mendelian diseases have been reported, but less than half of all rare monogenic disorders has been discovered. In addition, the majority of mutations that are known to cause Mendelian disorders are located in protein-coding regions. Therefore, exome sequencing is an efficient strategy to selectively sequence the coding regions of the human genome to identify novel genes associated with rare genetic disorders. The "exome" represents all of the exons in the human genome, constituting about 1.5% of the human genome. Exome sequencing is carried out by targeted capture and intense parallel sequencing. After the first report of successful exome sequencing for the identification of causal genes and mutations in Freeman Sheldon syndrome, exome sequencing has become a standard approach to identify genes in rare Mendelian disorders. Exome sequencing is also used to search the causal genes and variants in complex diseases. The successful use of exome sequencing in Mendelian disorders and complex diseases will facilitate the development of personalized genomic medicine.

Advantages of the single nucleotide polymorphism-based noninvasive prenatal test

  • Kim, Kunwoo
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.66-71
    • /
    • 2015
  • Down syndrome screening with cell-free DNA (cfDNA) in the maternal plasma has recently received much attention in the prenatal diagnostic field. Indeed, a large amount of evidence has already accumulated to show that screening tests with cfDNA are more sensitive and specific than conventional maternal serum and/or ultrasound screening. Globally, more than 1,000,000 of these noninvasive prenatal tests (NIPTs) have been performed to date. There are several different methods for NIPTs that are currently commercially available, including shotgun massively parallel sequencing, targeted massively parallel sequencing, and single nucleotide polymorphism (SNP)-based methods. All of these methods have their own advantages and disadvantages. In this review, I will focus specifically on the SNP-based NIPT.

Analyses of alternative polyadenylation: from old school biochemistry to high-throughput technologies

  • Yeh, Hsin-Sung;Zhang, Wei;Yong, Jeongsik
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.201-207
    • /
    • 2017
  • Alternations in usage of polyadenylation sites during transcription termination yield transcript isoforms from a gene. Recent findings of transcriptome-wide alternative polyadenylation (APA) as a molecular response to changes in biology position APA not only as a molecular event of early transcriptional termination but also as a cellular regulatory step affecting various biological pathways. With the development of high-throughput profiling technologies at a single nucleotide level and their applications targeted to the 3'-end of mRNAs, dynamics in the landscape of mRNA 3'-end is measureable at a global scale. In this review, methods and technologies that have been adopted to study APA events are discussed. In addition, various bioinformatics algorithms for APA isoform analysis using publicly available RNA-seq datasets are introduced.

Maturity-onset Diabetes of the Young: Update on Diagnosis and Treatment

  • Jang, Kyung Mi
    • Journal of Interdisciplinary Genomics
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Maturity-onset diabetes of the young (MODY) is characterized by a heterogeneous group of monogenic diabetes. MODY has autosomal dominant inheritance, a primary defect in pancreatic β-cell, and an early onset. Discriminating MODY from type 1 or type 2 diabetes is often challenging at first. To date, 14 different disease causing mutations have been identified in MODY patients worldwide. Targeted DNA sequencing is the gold standard to diagnose MODY and their asymptomatic relatives. Next-generation sequencing may help successfully to diagnose MODY patients and identify new MODY genes. In this review, the current perspectives on diagnosis and treatment of MODY and discrepancy in the disease-causing mutations between the Asian and Caucasian patients with MODY are summarized.

Lipoid Congenital Adrenal Hyperplasia Diagnosed in an Infant with Hyperpigmentation Only by Targeted Exome Sequencing

  • Kim, Jinsup;Yang, Aram;Jang, Ja-Hyun;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2017
  • Lipoid congenital adrenal hyperplasia (LCAH) is the severe form of congenital adrenal hyperplasia and is characterized by adrenal insufficiency with hyperpigmentation and female external genitalia irrespective of genetic sex. The steroidogenic acute regulatory protein (StAR) is required for the transport of cholesterol into the mitochondria for steroidogenesis, and defects in the StAR gene account for the majority of LCAH cases. In this report, we present a two-day-old hyperpigmented infant with phenotypical female genitalia. With consideration of the clinical and laboratory findings, the infant was suspected of having adrenal insufficiency due to LCAH and treated with glucocorticoid, mineralocorticoid, and sodium chloride. Karyotyping revealed 46, XY. Upon pelvis ultrasonography, adrenal hyperplasia with abdominal masses (thought to be the testicles) was reported. Molecular analysis with targeted exome sequencing revealed the homozygote mutation of c.772C>T ($p.Q258^*$) in exon 7 of the StAR gene. The early detection and treatment of adrenal insufficiency in infants with hyperpigmentation can prevent clinically apparent adrenal crises. During follow-up, the patient had a good clinical condition and maintained normal electrolyte and adrenocorticotropic hormone levels with medication.

Development of PCR based approach to detect potential mosaicism in porcine embryos

  • Cho, Jongki;Uh, Kyungjun;Ryu, Junghyun;Fang, Xun;Bang, Seonggyu;Lee, Kiho
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.323-328
    • /
    • 2020
  • Direct injection of genome editing tools such as CRISPR/Cas9 system into developing embryos has been widely used to generate genetically engineered pigs. The approach allows us to produce pigs carrying targeted modifications at high efficiency without having to apply somatic cell nuclear transfer. However, the targeted modifications during embryogenesis often result in mosaicism, which causes issues in phenotyping founder animals and establishing a group of pigs carrying intended modifications. This study was aimed to establish a genomic PCR and sequencing system of a single blastomere in the four-cell embryos to detect potential mosaicism. We performed genomic PCR in four individual blastomeres from four-cell embryos. We successfully amplified target genomic region from single blastomeres of 4-cell stage embryo by PCR. Sanger sequencing of the PCR amplicons obtained from the blastomeres suggested that PCR-based genotyping of single blastomere was a feasible method to determine mutation type generated by genome editing technology such as CRISPR/Cas9 in early stage embryos. In conclusion, we successfully genotyped single blastomeres in a single 4-cell stage embryo to detect potential mosaicism in porcine embryos. Our approach offers a simple platform that can be used to screen the prevalence of mosaicism from designed CRISPR/Cas9 systems.

Identification of causative mutations in patients with Leigh syndrome and MERRF by mitochondrial DNA-targeted next-generation sequencing

  • Hong, Hyun Dae;Kim, Eunja;Nam, Soo Hyun;Yoo, Da Hye;Suh, Bum Chun;Choi, Byung-Ok;Chung, Ki Wha
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.109-117
    • /
    • 2015
  • Purpose: Mitochondrial diseases are clinically and genetically heterogeneous disorders, which make their exact diagnosis and classification difficult. The purpose of this study was to identify pathogenic mitochondrial DNA (mtDNA) mutations in 2 Korean families with myoclonic epilepsy with ragged-red fibers (MERRF) and Leigh syndrome, respectively. Materials and Methods: Whole mtDNAs were sequenced by the method of mtDNA-targeted next-generation sequencing (NGS). Results: Two causative mtDNA mutations were identified from the NGS data. An m.8344A>G mutation in the tRNA-Lys gene (MT-TK) was detected in a MERRF patient (family ID: MT132), and an m.9176T>C (p.Leu217Pro) mutation in the mitochondrial ATP6 gene (MT-ATP6) was detected in a Leigh syndrome patient (family ID: MT130). Both mutations, which have been reported several times before in affected individuals, were not found in the control samples. Conclusion: This study suggests that mtDNA-targeted NGS will be helpful for the molecular diagnosis of genetically heterogeneous mitochondrial diseases with complex phenotypes.

Xeroderma pigmentosum group A with mutational hot spot (c.390-1G>C in XPA ) in South Korea

  • Choi, Jung Yoon;Yun, Hyung Ho;Lee, Cha Gon
    • Journal of Genetic Medicine
    • /
    • v.13 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • Purpose: Xeroderma pigmentosum (XP) is rare autosomal recessive genetic disorder of DNA repair in which the ability to repair damage caused by ultraviolet light is deficient. We reported the first molecularly confirmed Korean patient of XP by targeted exome sequencing. The prevalence of XP included all subtype and carrier frequency of XP-A the using public data were estimated for the first time in South Korea. Materials and Methods: We described a 4-year-old Korean girl with clinical diagnosis of XP. We performed targeted exome sequencing in the patient for genetic confirmation considering disease genetic heterogeneity and for differential diagnosis. We verified a carrier frequency of c.390-1G>C in XPA gene known as mutational hot spot using Korean Reference Genome Data Base. We estimated the period prevalence of all subtypes of XP based on claims data of the Health Insurance Review and Assessment Service in South Korea. Results: We identified homozygous splicing mutation of XPA (c.390-1G>C) in the patient. The carrier frequency of risk for XPA (c.390-1G>C) was relatively high 1.608 e-03 (allele count 2/1244). The prevalence of XP in South Korea was 0.3 per million people. Conclusion: We expect that c.390-1G>C is hot spot for the mutation of XPA and possible founder variant in South Korea. However, the prevalence in South Korea was extremely low compared with Western countries and Japan.

Identification of a novel heterozygous mutation of ACAN in a Korean family with proportionate short stature

  • Kim, Yoo-Mi;Cheon, Chong Kun;Lim, Han Hyuk;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.102-106
    • /
    • 2018
  • Aggrecan is a proteoglycan in the extracellular matrix of growth plate and cartilaginous tissues. Aggrecanopathy has been reported as a genetic cause not only for severe skeletal dysplasia but also for autosomal dominant short stature with normal to advanced bone age. We report a novel heterozygous mutation of ACAN in a Korean family with proportionate short stature identified through targeted exome sequencing. We present a girl of 4 years and 9 months with a family history of short stature over three generations. The paternal grandmother is 143 cm tall (-3.8 as a Korean standard deviation score [SDS]), the father 155 cm (-3.4 SDS), and the index case 96.2 cm (-2.9 SDS). Evaluation for short stature showed normal growth hormone (GH) peaks in the GH provocation test and a mild delayed bone age for chronological age. This subject had clinical characteristics including a triangular face, flat nasal bridge, prognathia, blue sclerae, and brittle teeth. The targeted exome sequencing was applied to detect autosomal dominant growth palate disorder. The novel variant c.910G>A (p.Asp304Asn) in ACAN was identified and this variant was found in the subject's father using Sanger sequencing. This is the first case of Korean familial short stature due to ACAN mutation. ACAN should be considered for proportionate idiopathic short stature, especially in cases of familial short stature.