• 제목/요약/키워드: target water quality

검색결과 332건 처리시간 0.023초

농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형 (Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds)

  • 최인욱;권순국
    • 한국농공학회지
    • /
    • 제44권5호
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

낙동강수계 3단계 광역시·도 경계지점 목표수질 설정 방법 연구 (Research on How to Set 3rd Phase Target Water Quality on the Boundary between Metropolitan Cities/Dos Specified in Nakdong River Basin)

  • 황하선;박지형;김용석;류덕희;최유진;이성준
    • 한국물환경학회지
    • /
    • 제33권1호
    • /
    • pp.70-77
    • /
    • 2017
  • Total Pollution Load Control (TPLC) is a system for managing the discharge load assigned by satisfying the Target Water Quality (TWQ) in Standard Flow Conditions (SFC). TWQ for a between Metropolitan Cities/Dos Specified (Cites/Dos TWQ) is very important to be the basis of each Unit Watershed TWQ. The purpose of this study was to establish a rational and scientific 'Calculation Metohd of Cites/Dos TWQ'. A methodology for the 3rd phase 'Cites/Dos TWQ' was proposed in this study based on review of the past phase (1rd and 2rd) 'Cites/Dos TWQ' in nakdong river. And utilized water quality model to estimate 3rd phase 'Cites/Dos TWQ' The allocation method of individual discharge sources are important for estimating 'Cites/Dos TWQ' In this case, the key point of the method of calculating the total allowable individual sources is the balance of the equity and the efficiency between individual sources of reduced pollutants. Thus, water quality shall be determined with regard to the current emission levels, the reduction capacity and the technical possibilities of individual sources. We estimate 3rd phase 'Cites/Dos TWQ' according to the 'Calculation Method of Cites/Dos TWQ'.

영산강 하류부의 목표수질 달성을 위한 BOD 부하량 삭감방법의 비교 (A Comparison Between Reduction Methods for BOD Loadings to Achieve Water Quality Standards at the End of the Yeongsan River)

  • 황대호;정효준;이홍근
    • 한국환경보건학회지
    • /
    • 제27권2호
    • /
    • pp.119-126
    • /
    • 2001
  • The key point in establishing water quality management measures is how to decide the load reduction for pollution sources. This study was performed to compare reduction methods for BOD loadings to achieve water quality standards at the end of the Yeongsan river. The target year is 2006 and 2011 and reduction methods are uniform treatment and treatment by influence rate. Using QUAL2E model, the study was performed under the conditions of establishing and non-establishing the publicly owned treatment works(POTWs). Uniform treatment which allocate the same reduction rate to pollution sources showed that all streams into the river should be applied for the reduction. However, treatment by influence rate which allocate the reduction rate by the order of influence rate showed that achieving target quality might be possible with a few streams for the reduction. But total amount of load reduction of streams was not significantly different from two methods.

  • PDF

SWAT와 부하지속곡선을 이용한 유역 수질 관리방안 (Watershed Water Quality Management Plan Using SWAT and Load Duration Curve)

  • 갈병석;조소현;박천동;문현생;주용은;박재범
    • 한국지리정보학회지
    • /
    • 제24권3호
    • /
    • pp.41-57
    • /
    • 2021
  • 본 연구는 대청호 상류에 있는 서화천 유역을 대상으로 SWAT(Soil and Watershed Assessment Tool) 모형을 이용한 수질 관리 대책 적용 및 부하지속곡선(LDC, Load Duration Curve)을 이용한 대책의 효율을 평가하였다. 수질 관리 대책으로는 인공습지, 방치 축분 저감, 비닐하우스 유출량 저감, 생태하천 복원, LID(Low Impact Development) 기술 적용, 점오염원 관리를 적용하였다. 적용된 기술은 부하지속곡선을 통해 유황별 목표 수질 초과율 및 부하량 저감 정도를 이용하여 수질 개선대책의 효율을 평가하였다. 부하지속곡선은 SWAT를 이용하여 장기 유량지속곡선(FDC, Flow Duration Curve)을 만들고 목표 수질을 곱하여 작성하였으며 목표 수질은 서화천 하류에 있는 옥천천 수질 관측지점의 10년간 자료를 사용하여 60분위에 해당하는 값을 목표 수질로 설정하였다. 본 연구를 통하여 여러 가지 수질 대책을 SWAT 모형을 통해 적용 가능성을 확인할 수 있으며 부하지속곡선을 통하여 유황에 따른 시기별 적용 가능성을 검토할 수 있었다.

우리나라 오염총량관리제도의 개선 및 적용: 1. 안양천 유역의 오염부하량 산정 (Improvement and Application of Total Maximum Daily Load Management System of Korea: 1. Calculation of Total Amount of Pollutant Load in the Anyangcheon Watershed)

  • 김경태;정은성;김상욱;이길성;성진영
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.972-978
    • /
    • 2009
  • This study modifies the present total maximum daily load (TMDL) system of Ministry of Environment and applies to the Anyangcheon watershed. Hydrologic Simulation Program-FORTRAN (HSPF) model is used to simulate both runoff and non-point source pollution, simultaneously, instead of QUAL2E. The drought flow (355th daily flow) is proposed for the target water quantity since it is easier to satisfy low flow (275th daily flow) for the target water quality than drought flow. The increase of discharge is more than the increase of pollutant load except for the period under low flow. The measured unit loads for non-point source are used to consider the regional runoff characteristics. The measured water quantity and quality data are used since the ministry of environment supports only water quality. This analysis results show some reasons for the improvement of the present TMDL system of Korea.

수질오염총량관리제 시행에 있어서 중앙정부와 지방자치단체 간 역할정립 (Establishment of Role Between Central and Local Government for Implementation of Total Maximum Daily Load)

  • 이상진
    • 대한환경공학회지
    • /
    • 제33권5호
    • /
    • pp.378-383
    • /
    • 2011
  • 수질오염총량관리제는 유역에 설정된 오염물질 항목별 목표수질을 만족할 수 있도록 배출부하량을 총량적으로 관리하기 위해서 도입되었다. 그 동안 4대강 수계를 대상으로 수질오염총량관리제를 시행하면서 여러 가지 문제점이 발생되었다. 이러한 문제점들이 일부 보완되었지만, 아직도 중앙정부와 지방자치단체간의 역할에 대한 부분은 명확하게 정립되어 있지않다. 따라서 본 연구는 수질오염총량관리제의 효율적인 시행을 위한 중앙정부와 지방자치단체간의 역할을 제시하였다. 먼저, 중앙정부는 국가하천의 주요지점에 수질기준 및 대상항목을 포함하는 환경기준을 설정하고, 지방자치단체는 해당유역에서 대상항목의 목표수질을 설정해야 한다. 또한, 지방자치단체는 지류하천의 수질개선정도를 파악하기 위하여 하천의 수질 및 유량모니터링을 지속적으로 시행하여야 한다. 특히, 중앙정부의 유역환경청은 전체 수계를 대상으로 수질오염총량관리 기본계획을 수립하여야 하며, 지방자치단체는 목표수질을 초과하는 단위유역을 대상으로 시행계획을 수립하여야 한다. 수질 오염총량관리 이행평가는 기초자치단체에서 지류하천의 수질 및 유량을 모니터링을 통하여 매년마다 단위유역의 목표수질 만족여부 만을 평가해야 한다. 수질오염총량관리 이행평가보고서는 단위유역의 목표수질 초과에 대한 원인분석을 포함하여 계획기간 최종년도에 유역환경청에 제출하여야 한다.

석문호 유역 오염물질 배출특성 분석 및 수질모델링에 기초한 수질개선방안 연구 (Water Quality Improvement Plans based on the Analysis of Pollutant Discharge Characteristics and Water Quality Modelling of Seokmun Reservoir Watershed)

  • 최무진;정우혁;최재훈;김영일
    • 대한환경공학회지
    • /
    • 제39권10호
    • /
    • pp.581-590
    • /
    • 2017
  • 석문호 수질을 가장 효율적으로 개선하기 위한 최적의 방안을 마련하기 위해 본 연구에서는 지류하천의 수질 및 유량조사, 퇴적물 조사, 오염원 조사, 하천그룹화를 통한 중점관리 대상유역 선정을 포함한 다양한 분석을 수행하였다. 석문호 유역의 주요 지류하천은 대부분 BOD농도는 낮은 반면 COD농도는 높은 경향을 보였으며, 역천, 당진천, 시곡천, 백석천, 진관소하천, 장항소하천 등은 수질항목에 관계없이 수질농도가 높은 경향을 보였다. 석문호 유역 내 오염원은 생활계, 축산계 및 산업계가 대부분으로 지역에 따라 다양하게 분포하는 것으로 조사되었다. 석문호 수질개선을 위해 중점관리 대상하천으로 선정된 당진천, 역천, 백석천, 장항소하천 유역 내 위치하고 있는 오염원의 우선적인 저감이 필요한 것으로 판단된다. 석문호 수질개선을 위한 다양한 시나리오별 수질개선효과를 수질모델을 이용하여 정량적으로 평가한 결과, 유역 내 오염물질 배출량 관리를 위해 공공하수처리시설을 신설 및 증설만 하여도 호소 수질 V등급을 만족하는 것으로 나타났다.

수질오염총량관리 단위유역 유량그룹별 수체 손상 분석 (Research on the Evaluation of Impaired Waterbody using the Flowrate Group at TMDL Unit Watershed in Nakdong River Basin)

  • 황하선;김상수;김진이;박배경
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.933-942
    • /
    • 2012
  • The purpose of this study is to evaluate the degree of waterbody impairment according to the flow conditions and present to the appropriate water quality improvement alternatives using observed water quality and flow for Total Maximum Daily Load (TMDL) implementation at 39 unit watersheds the nakdong river basin. Observed water quality data for 7 years are divided into five cumulative flow frequency group and comparing the each observed water quality data and TMDL Target water quality (TWQ) the last evaluate the water quality is impaired group. We found that the cumulative flow frequency group-specific the average excess rate of V group was the highest (32.86%), followed by the IV group (26.04%), group III (23.36%), II group (22.67%), I group (20.70%), the degree of impaired waterbody tended to be inversely proportional to the flow rate. Resulted from cumulative flow frequency group of impaired water quality assessment, 13 unit watersheds are impaired from a group IV and group V affected by point sources. Therefore, improvement of sewage discharge and the initial composition of the riparian buffer zone are needed. Nakbon F, Namkang D and Namkang E within 13 unit watersheds are impaired from group II and III affected by non-point sources. Therefore, application of Best Management Practices (BMPs) is needed for these watersheds. Evaluation of impaired waterbody using Cumulative flow frequency group is able to determine the extent of the judgment to TWQ exceeded by the flow conditions and helps proper setting Standard flow and planning pollutant reduction for TMDL.

부하지속곡선(Load Duration Curve; LDC)을 이용한 한강수계 오염총량관리 목표수질 평가방법 적용 방안 (Application of the Load Duration Curve (LDC) to Evaluate the Achievement Rate of Target Water Quality in the Han-River Watersheds)

  • 김은경;류지철;김홍태;김용석;신동석
    • 한국물환경학회지
    • /
    • 제31권6호
    • /
    • pp.732-738
    • /
    • 2015
  • Water quality in four major river basin in Korea was managed with Total Maximum Daily Load (TMDL) System. The unit watershed in TMDL system has been evaluated with Target Water Quality (TWQ) assessment using average water quality, without considering its volume of water quantity. As results, although unit watershed are obtained its TWQ, its allocated loads were not satisfied and vice versa. To solve these problems, a number of TWQ assessments with using Load Duration Curve (LDC) have been studied at other watersheds. The purpose of this study was to evaluate achievement of TWQ with Flow Duration Curve (FDC) and Load Duration Curve(LDC) at 26 unit watersheds in Han river basin. The results showed that achievement rates in TWQ assessment with current method and with LDC were 50~56 % and 69~73%, respectively. Because of increasing about 20% of achievement rates with using LDC, the number of exceeded unit watershed at Han river Basin was decreased about 4~6 unit watersheds.

유량자료의 시간적 연속성 변화가 오염부하지속곡선에 미치는 영향 비교 분석 (Influence Analysis of Temporal Continuity Change of Flow Data on Load Duration Curve)

  • 권필주;한정호;류지철;김홍태;임경재;김종건
    • 한국물환경학회지
    • /
    • 제33권4호
    • /
    • pp.394-402
    • /
    • 2017
  • In korea, TMDL is being implemented to manage nonpoint pollution sources as well as point pollution sources. LDC is being used for the planning of TMDL. In order to analyze the water quality using LDC, it is necessary to prepare FDC using the daily flow data. However, only the daily flow data is measured at the WAMIS branch, and 8days flow data and water quality data are measured at the monitoring Networks. So, in many researches, the water quality is being grasped by deriving the LDC using the 8days flow or the daily flow obtained by various methods. These fluctuations may lead to differences in determining whether the target load is achieved. In this study, each LDC was prepared using the 8day flow and the related daily flow. Then, the effect using different flow data on the achievement of target load was compared according to flow conditions. As a result, the difference ratio in the number of overloads under flow condition was showed 19% in high flows, 42% in moist conditions, 49% in mid-range flows, 41% in dry conditions, and 104% in low flows. In the top ten watershed with the highest difference ratio, the flow became lower the difference ration increases. These differences can cause uncertainty in assessing the achievement of target load using LDC. Therefore, in order to evaluate the water quality accurately and reliably using LDC, accurate daily flow data and water quality data should be secured through the installation of national nonpoint measurement network.