• 제목/요약/키워드: target water level

검색결과 240건 처리시간 0.023초

Research on the Applicability of the Load Duration Curve to Evaluate the Achievement of Target Water Quality in the Unit Watershed for a TMDL (수질오염총량 단위유역의 목표수질 달성여부 평가를 위한 부하지속곡선 적용성 연구)

  • Hwang, Ha-Sun;Park, Bae-Kyung;Kim, Yong-Seok;Park, Ki-Jung;Cheon, SeUk;Lee, Sung-Jun
    • Journal of Korean Society on Water Environment
    • /
    • 제27권6호
    • /
    • pp.885-895
    • /
    • 2011
  • The purpose of this study was evaluated on achievement of the Target water quality (TWQ) with Load Duration Curve (LDC) as well as materials collected through the implementation of Total Maximum Daily Load (TMDL), targeting 41 unit watersheds in the Nakdong River Basin in korea, and examines the adequacy of the LDC method to evaluate the TWQ by comparing methods through current regulations. It aims to provide basic materials for TMDL development in Korea. This determination resulted from the fact that the measured data placed on the LDC mean that they are beyond TWQ in a certain condition of water flow when actually measured load values were displayed in a form of LDC. In addition to water quality surveys, it is considered that information on the level of damage in a water body by water flow grade can be utilized as a basic material to identify compliance with the total admitted quantity, and establish rational plans to improve water quality. This information helps in the identification of the degree of damage in water quality according to water flow.

Reliability Based Design of Caisson type Quay Wall Using Partial Safety Factors (부분안전계수를 이용한 케이슨식안벽의 신뢰성설계법)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제21권3호
    • /
    • pp.224-229
    • /
    • 2009
  • Partial safety factors(PSFs) for Level I reliability based design of caisson type quay walls were calculated. First order reliability method(FORM) based PSFs are the functions of sensitivities of limit state function with respect to design random variables, target reliability index, characteristic values and first moment of random variables. Modified PSFs for water level and resilient water level are newly defined to keep consistency with the current design code. In the numerical example, PSFs were calculated by using a target reliability index. Seismic coefficient is defined to show extreme distribution. It was found that PSFs for seismic coefficient becomes smaller as the return period for design seismic coefficient grows longer.

Optimizing Rules for Releasing Environmental Water in Enlarged Agricultural Reservoirs (둑높이기 농업용저수지의 환경용수 방류기준 설정)

  • Yoo, Seung-Hwan;Lee, Sang-Hyun;Choi, Jin-Yong;Park, Tae-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제54권5호
    • /
    • pp.17-24
    • /
    • 2012
  • The main purposes of the agricultural reservoir enlargement (ARE) project are to secure water supply reliability (WSR) for agriculture and to release environmental water during dry seasons. In this study, an operational rule that will simultaneously satisfy both the above issues was developed. Initial amount of water storage at the beginning of non-irrigation season (1st October) was divided into 3 stages, and the target level of water storage at the beginning of irrigation seasons (1st April) was set up. Required operational curves and release amounts were estimated based on the stages and target water levels. To evaluate the applicability of this rule, the amount of water released for environmental purposes and WSRs were analyzed for three reservoirs (Unam, Jangchi and Topjeong). The ratio between annual amount of release and additional amount of water storage were 1.6, 1.85, and 4.1 for the Unam, Jangchi, Tapjeong reservoirs, respectively. Also, the WSRs of all reservoirs were found to become higher than when the design standard was applied. Therefore, it is considered that the proposed rule is more suitable for the enlarged agricultural reservoirs operation as it satisfies the WSRs while securing the environmental water release.

Prediction of Water Level at Downstream Site by Using Water Level Data at Upstream Gaging Station (상류 수위관측소 자료를 활용한 하류 지점 수위 예측)

  • Hong, Won Pyo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • 제35권2호
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, the overseas construction market has been actively promoted for about 10 years, and overseas dam construction has been continuously performed. For the economic and safe construction of the dam, it is important to prepare the main dam construction plan considering the design frequency of the diversion tunnel and the cofferdam. In this respect, the prediction of river level during the rainy season is significant. Since most of the overseas dam construction sites are located in areas with poor infrastructure, the most efficient and economic method to predict the water level in dam construction is to use the upstream water level. In this study, a linear regression model, which is one of the simplest statistical methods, was proposed and examined to predict the downstream level from the upstream level. The Pyeongchang River basin, which has the characteristics of the upper stream (mountain stream), was selected as the target site and the observed water level in Pyeongchang and Panwoon gaging station were used. A regression equation was developed using the water level data set from August 22th to 27th, 2017, and its applicability was tested using the water level data set from August 28th to September 1st, 2018. The dependent variable was selected as the "level difference between two stations," and the independent variable was selected as "the level of water level in Pyeongchang station two hours ago" and the "water level change rate in Pyeongchang station (m/hr)". In addition, the accuracy of the developed equation was checked by using the regression statistics of Root Mean Square Error (RMSE), Adjusted Coefficient of Determination (ACD), and Nach Sutcliffe efficiency Coefficient (NSEC). As a result, the statistical value of the linear regression model was very high, so the downstream water level prediction using the upstream water level was examined in a highly reliable way. In addition, the results of the application of the water level change rate (m/hr) to the regression equation show that although the increase of the statistical value is not large, it is effective to reduce the water level error in the rapid level rise section. Accordingly, this is a significant advantage in estimating the evacuation water level during main dam construction to secure safety in construction site.

Development of an Optimal Operation Model of Residual Chlorine Concentration in Water Supply System (송·배수시스템의 최적 잔류염소농도 관리 모델 개발)

  • Kim, Kibum;Hyung, Jinseok;Seo, Jeewon;Shin, Hwisu;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제31권6호
    • /
    • pp.587-597
    • /
    • 2017
  • This study aimed to develop a method to optimize residual chlorine concentrations in the process of providing water supply. To this end, this study developed a model capable of optimizing the chlorine input into the clearwell in the purification plant and the optimal installation location of rechlorination facilities, and chlorine input. This study applied genetic algorithms finding the optimal point with appropriate residual chlorine concentrations and deriving a cost-optimal solution. The developed model was applied to SN purification plant supply area. As a result, it was possible to meet the target residual chlorine concentration with the minimum cost. Also, the optimal operation method in target area according to the water temperature and volume of supply was suggested. On the basis of the results, this study derived the most economical operational method of coping with water pollution in the process of providing water supply and satisfying the service level required by consumers in the aspects of cost effectiveness. It is considered possible to appropriately respond to increasing service level required by consumers in the future and to use the study results to establish an operational management plan in a short-term perspective.

Comparative analysis of caisson sections of composite breakwaters evaluated by Level I reliability-based design method (Level I 신뢰성 기반 설계법에 의해 산정된 혼성제 케이슨 단면의 비교 분석)

  • Lee, Cheol-Eung;Park, Dong Heon;Kim, Sang Ug
    • Journal of Korea Water Resources Association
    • /
    • 제51권7호
    • /
    • pp.543-554
    • /
    • 2018
  • A methodology has been presented for evaluating the partial safety factors on the sliding failure mode of vertical caissons of composite breakwaters and for determining the cross sections of those by Level I reliability-based design method. Especially, a mathematical model has been suggested for the sake of a consistency of code format as well as convenience of application in practical design, for which the uncertainties associated with buoyancy and its own weight can be taken into account straightforwardly. Furthermore, design criteria equation has been derived by considering accurately the effect of uplift pressure, so that the cross sections of caissons can be assessed which must be safe against the sliding failure. It has been found that cross sections estimated from partial safety factors proposed in this paper are in very good agreement with the results of Level II AFDA and Level III MCS under the same target probability of failure. However, partial safety factors of the Technical Standards and Commentaries for Port and Harbour Facilities in Japan and Coastal Engineering Manual in USA tend to estimate much bigger or smaller cross sections in comparison to the present results. Finally, many reliability re-analyses have been performed in order to conform whether the stability level of cross section estimated by Level I reliability-based design method is satisfied with the target probability of failure of partial safety factors or not.

A Study on Estimation of Target Precipitation in Seoul using AWS minutely Rainfall Data (AWS 분(分) 단위 강우자료를 이용한 서울지역 특성에 따른 행정자치 구(區)별 목표강우량 산정에 관한 연구)

  • Kim, Min-seoka;Son, Hong-mina;Moon, Young-il
    • Journal of Korea Water Resources Association
    • /
    • 제49권1호
    • /
    • pp.11-18
    • /
    • 2016
  • It is very important to decide probability precipitation that is used as hydraulic structure design and target rainfall for urban disaster prevention. Especially, National Emergency Management Agency (NAMA) announced target rainfall from probability precipitation in korea on city and district level. It make use to performance evaluation of disaster prevention and planning of development for disasters prevention capacity target. In this study was calculated target rainfall that is duration 1~3 hour based unit of gu (borough) by point and regional frequency analysis using rainfall data of Surface Synoptic Stations (SSS) and Automatic Weather Stations (AWS). The result of this study can utilized as a reference to related business such as disaster capability assessment and achievement of prevention capacity target against disasters. And it also will be contribute to establishment of prevention capacity target against disasters.

Study of Flooding Prevention on Cathode Gas Diffusion Layer for Dynamic Load Fuel Cell

  • Choi, Dong-Won;You, Jin-Kwang;Rokhman, Fatkhur;Bakhtiar, Agung;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.270-273
    • /
    • 2011
  • Water management is important in proton exchange membrane fuel cell because the water balance has a significant impact on the overall fuel cell system performance. In fuel cell vehicle, the vehicle's power demand is dynamic; therefore, the dynamic water management system is required. This present study proposes a method to control the humidity of the input air in cathode side of the fuel cell vehicle. The simulation using several driving cycles shows the proposed air humidification control obtains a relatively good result. The liquid saturation level is seen constant at the target level although still there are small deviations at driving cycles which having averagely high power demands.

  • PDF

The Comparison of Grid Resolutions using EFDC in Saemangeum Reservoir (격자 해상도에 따른 EFDC의 새만금호 모의)

  • Shin, Yu-Ri;Jang, Jeongryeil;Choi, Jung-Hoon;Cho, Young Kweon
    • Journal of Korean Society on Water Environment
    • /
    • 제28권5호
    • /
    • pp.646-656
    • /
    • 2012
  • This study area was Saemangeum Reservoir in Korea and the applied model was Environmental Fluid Dynamics Code(EFDC). It was the same as the scenarios to the boundary and initial conditions except the resolutions of the model grids. The resolutions were about 800 and 2,000 cells. It was considered scenario 1 and 2. The model was performed to simulate the water temperature, salinity, water quality parameters such as dissolved oxygen(DO), chemical oxygen demand(COD), total nitrogen(T-N), and total phosphorus(T-P) at 2008. The simulation results of the two scenarios were reflected in the trend of observed data tolerably. However, water flow, water temperature, and salinity showed high confidence level at the scenario 1. The water quality items did not present high confidence level at the scenario 1 because which concept was considered to biochemical and physical processes. This result shows that grid resolution has an influence on the water transport and the effect is reflected directly shallow and narrow water area. But, the selection of grid resolution should be considered the purpose of model simulation and the process of target items.

Flood Forecasting and Warning System using Real-Time Hydrologic Observed Data from the Jungnang Stream Basin (실시간 수문관측자료에 의한 돌발 홍수예경보 시스템 -중랑천 유역을 중심으로-)

  • Lee, Jong-Tae;Seo, Kyung-A;Hur, Sung-Chul
    • Journal of Korea Water Resources Association
    • /
    • 제43권1호
    • /
    • pp.51-65
    • /
    • 2010
  • We suggest a simple and practical flood forecasting and warning system, which can predict change in the water level of a river in a small to medium-size watershed where flash flooding occurs in a short time. We first choose the flood defense target points, through evaluation of the flood risk of dike overflow and lowland inundation. Using data on rainfall, and on the water levels at the observed and prediction points, we investigate the interrelations and derive a regression formula from which we can predict the flood level at the target points. We calculate flood water levels through a calibrated flood simulation model for various rainfall scenarios, to overcome the shortage of real water stage data, and these results as basic population data are used to derive a regression formula. The values calculated from the regression formula are modified by the weather condition factor, and the system can finally predict the flood stages at the target points for every leading time. We also investigate the applicability of the prediction procedure for real flood events of the Jungnang Stream basin, and find the forecasting values to have close agreement with the surveyed data. We therefore expect that this suggested warning scheme could contribute usefully to the setting up of a flood forecasting and warning system for a small to medium-size river basin.