• Title/Summary/Keyword: target volume

Search Result 913, Processing Time 0.027 seconds

DDoS attacks prevention in cloud computing through Transport Control protocol TCP using Round-Trip-Time RTT

  • Alibrahim, Thikra S;Hendaoui, Saloua
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.276-282
    • /
    • 2022
  • One of the most essential foundations upon which big institutions rely in delivering cloud computing and hosting services, as well as other kinds of multiple digital services, is the security of infrastructures for digital and information services throughout the world. Distributed denial-of-service (DDoS) assaults are one of the most common types of threats to networks and data centers. Denial of service attacks of all types operates on the premise of flooding the target with a massive volume of requests and data until it reaches a size bigger than the target's energy, at which point it collapses or goes out of service. where it takes advantage of a flaw in the Transport Control Protocol's transmitting and receiving (3-way Handshake) (TCP). The current study's major focus is on an architecture that stops DDoS attacks assaults by producing code for DDoS attacks using a cloud controller and calculating Round-Tripe Time (RTT).

Feasibility study of using Halcyon LINAC for Double-target spine stereotactic body radiation therapy (이중 표적 척추 전이암의 체부정위방사선치료 시 Halcyon LINAC의 치료 유용성 평가)

  • Jeong Hee Ju;An Ye Chan;Park Byung Suk;Park Myung Hwan;Park Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.51-60
    • /
    • 2022
  • Objectives: The purpose is to evaluate dosimetric performance and delivery efficiency of VMAT with Halcyon LINAC for double target spine SBRT Materials and Methods: 12 patients with spine oligometastases were retrospectively studied. Single-isocenter spine SBRT plans was established using Halcyon® with Dual Layer MLC and Truebeam® with High Definition MLC. All patients' plans were created in Eclipse TPS through the identical conditions and optimization. C.I, H.I, G.I (Gradient Index), maximal and volumetric doses to spinal cord and low dose area were evaluated for comparison of both plans. Also, total MU and BOT(Beam On Time) were evaluated. Results: Halcyon plans was no Statistical differences in C.I and H.I. However, the average of G.I was 4.64 for Halcyon, which decreased to 5.5% compared to Truebeam (P<0.001). Halcyon plans demonstrated statistically significant reduced G.I. The average of 50% and 25% isodose volume was 487.56 cc (-3.82%, P<0.001), 1859.45 cc (-4.75%, P<0.001) in Halcyon, respectively. Significantly reduced low dose spill were observed in Halcyon plans. In the evaluation of the spinal cord, the average of Dmean and V10 of Halcyon plans in the sample group with an overlap volume of less than 1 cc was 6.802 Gy (-3.504%, P=0.067), 5.766±1.683 cc (-8.199%, P=0.002), respectively. Halcyon plans demonstrated statistically significant reduced Dmean and V10. For delivery efficiency, MU and BOT(maximum dose rate for each machine), on average, increased in Halcyon plans. However, the average of BOT(800MU/min for each machine) was 648.33 sec for Halcyon (-1.74%, P<0.001). Conclusion: Halcyon plan for double-target spine SBRT demonstrated advantages in the low dose area with a steep dose gradient, while having dosimetrically equivalent target dose distribution and spinal cord protective effect. As a result, Halcyon LINAC produced a dosimetrically improved plan for double-target spine SBRT.

Optimization of Dose Distribution for High Dose Rate Intraluminal Therapy (고선량율 관내 방사선치료를 위한 종양선량분포의 최적화에 대한 연구)

  • Chu, Sung-Sil;Kim, Gwi-Eon;Loh, Juhn-Kyu
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.243-252
    • /
    • 1994
  • The use of high dose rate remote afterloading system for the treatment of intraluminal lesions necessitates the need for a more accurate of dose distributions around the high intensity brachytherapy sources, doses are often prescribed to a distance of few centimeters from the linear source, and in this range the dose distribution is very difficult to assess. Accurated and optimized dose calculation with stable numerical algorithms by PC level computer was required to treatment intraluminal lesions by high dose rate brachytherapy system. The exposure rate from sources was calculated with Sievert integral and dose rate in tissue was calculated with Meisberger equation, An algorithm for generating a treatment plan with optimized dose distribution was developed for high dose rate intraluminal radiotherapy. The treatment volume becomes the locus of the constrained target surface points that is the specified radial distance from the source dwelling positions. The treatment target volume may be alternately outlined on an x-ray film of the implant dummy sources. The routine used a linear programming formulism to compute which dwell time at each position to irradiate the constrained dose rate at the target surface points while minimizing the total volume integrated dose to the patient. The exposure rate and the dose distribution to be confirmed the result of calculation with algorithm were measured with film dosimetry, TLD and small size ion chambers.

  • PDF

Image Based Quality Assurance of Range Compensator for Proton Beam Therapy (양성자치료용 보상체의 영상기반 정도 관리 기반 프로그램 개발)

  • Kim, Jin-Sung;Yoon, Myong-Geun;Kim, Dong-Wook;Lim, Young-Kyung;Kwak, Jung-Won;Park, So-Ah;Shin, Dong-Ho;Shin, Jung-Wook;Lee, Se-Byeong;Park, Sung-Yong;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • The main benefit of proton therapy over photon beam radiotherapy is the absence of exit dose, which offers the opportunity for highly conformal dose distributions to target volume while simultaneously irradiating less normal tissue. For proton beam therapy two patient specific beam modifying devices are used. The aperture is used to shape the transverse extension of the proton beam to the shape of the tumor target and a patient-specific compensator attached to the block aperture when required and used to modify the beam range as required by the treatment plan for the patient. A block of range shifting material, shaped on one face in such a way that the distal end of the proton field in the patient takes the shape of the distal end of the target volume. The mechanical quality assurance of range compensator is an essential procedure to confirm the 3 dimensional patient-specific dose distributions. We proposed a new quality assurance method for range compensator based on image processing using X-ray tube of proton therapy treatment room. The depth information, boundaries of each depth of plan compensatorfile and x-ray image of compensator were analyzed and presented over 80% matching results with proposed QA program.

  • PDF

Volumetric modulated arc therapy for carotid sparing in the management of early glottic cancer

  • Kim, Young Suk;Lee, Jaegi;Park, Jong In;Sung, Wonmo;Lee, Sol Min;Kim, Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.34 no.1
    • /
    • pp.18-25
    • /
    • 2016
  • Purpose: Radiotherapy of the neck is known to cause carotid artery stenosis. We compared the carotid artery dose received between volumetric modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (IMRT) plans in patients with early glottic cancer. Materials and Methods: Twenty-one early glottic cancer patients who previously underwent definitive radiotherapy were selected for this study. For each patient, double arc VMAT, 8-field IMRT, 3-dimensional conformal radiotherapy (3DCRT), and lateral parallel-opposed photon field radiotherapy (LPRT) plans were created. The 3DCRT plan was generated using lateral parallel-opposed photon fields plus an anterior photon field. VMAT and IMRT treatment plan optimization was performed under standardized conditions to obtain adequate target volume coverage and spare the carotid artery. Dose-volume specifications for the VMAT, IMRT, 3DCRT, and LPRT plans were calculated with radiotherapy planning system. Monitor units (MUs) and delivery time were measured to evaluate treatment efficiency. Results: Target volume coverage and homogeneity results were comparable between VMAT and IMRT; however, VMAT was superior to IMRT for carotid artery dose sparing. The mean dose to the carotid arteries in double arc VMAT was reduced by 6.8% compared to fixed-field IMRT (p < 0.001). The MUs for VMAT and IMRT were not significantly different (p = 0.089). VMAT allowed an approximately two-fold reduction in treatment delivery time in comparison to IMRT (3 to 5 minutes vs. 5 to 10 minutes). Conclusion: VMAT resulted in a lower carotid artery dose compared to conventional fixed-field IMRT, and maintained good target coverage in patients with early glottic cancer.

Intensity Modulated Whole Pelvic Radiotherapy in Patients with Cervix Cancer: Analysis of Acute Toxicity (자궁경부암 환자에서 전골반 강도변조방사선치료에 의한 급성부작용)

  • Choi, Young-Min;Lee, Hyung-Sik;Hur, Won-Joo;Cha, Moon-Seok;Kim, Hyun-Ho
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.248-254
    • /
    • 2006
  • $\underline{Purpose}$: To evaluate acute toxicities in cervix cancer patients receiving intensity modulated whole pelvic radiation therapy (IM-WPRT). $\underline{Materials\;and\;Methods}$: Between August 2004 and April 2006, 17 patients who underwent IM-WPRT were analysed. An intravenous contrast agent was used for radiotherapy planning computed tomography (CT). The central clinical target volume (CTV) included the primary tumor, uterus, vagina, and parametrium. The nodal CTV was defined as the lymph nodes larger than 1 cm seen on CT and the contrased-enhanced pelvic vessels. The planning target volume (PTV) was the 1-cm expanded volume around the central CTV, except for a 5-mm expansion from the posterior vagina, and the nodal PTV was defined as the nodal CTV plus a 1.5 cm margin. IM-WPRT was prescribed to deliver a dose of 50 Gy to more than 95% of the PTV. Acute toxicity was assessed with common toxicity criteria up to 60 days after radiotherapy. $\underline{Results}$: Grade 1 nausea developed in 10 (58.9%) patients, and grade 1 and 2 diarrhea developed in 11 (64.7%) and 1 (5.9%) patients, respectively. No grade 3 or higher gastrointestinal toxicity was seen. Leukopenia, anemia, and thrombocytopenia occurred in 15 (88.2%). 7 (41.2%), and 2 (11.8%) patients, respectively, as hematologic toxicities. Grade 3 leukopenia developed in 2 patients who were treated with concurrent chemoradiotherapy. $\underline{Conclusion}$: IM-WPRT can be a useful treatment for cervix cancer patients with decreased severe acute toxicities and a resultant improved compliance to whole pelvic irradiation.

Evaluation of Dose and Position Compensation of Parotid Gland Using CT On-rail System in Head-and-Neck Cancer (두경부 암환자 치료 시 CT On-rail System을 이용한 이하선의 위치 보정 및 선량 평가)

  • Jang, Hyeong-Jun;Im, Chung-Geun;Chun, Geum-Sung;Jeong, Il-Seon;Kim, Hoi-Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • Purpose: The checking method of target and normal structure are used by MVCBCT, KVCBCT, CT On-rail System, Ultrasound in H&N cancer patient. In case of MVCT, the utilization of bone structure is valuable to check around tissue. But the utilization of soft tissue is not enough. The point of this paper is dose variation in movable parotid and changeable volume of H&N cancer patient of CT On-rail System. Materials and Methods: The object of H&N cancer patient is 5 in this hospital. The selected patient are scanned ARTISTE CT Vision (CT On-ral System) a triweekly. After CT scanning, tranfered coordinates are obtained by movable of parotid gland comparison with planning image. Checking for the changeable volume of parotid gland. A Obtained CT image are tranfered to the RTP System. So dose variation are checked by following changed volume. Results: The changes of target coordinate by the parotid gland movement are X: -0.4~0.4 cm, Y: -0.4~0.3 cm, Z: -0.3~0.3 cm. the volume of GTV is decreased to about 7.11%/week and then both parotid gland volume are shrinked about 4.81%/week (Lt), 2.91%/week (Rt). At the same time, each parotid gland are diminished in radiation dose as 3.66%/week (Lt), 2.01%/week. Conclusion: Images from CT on the rail System which are able to aquire the better quality images of soft tissue in Target area than MVCBCT. After replanning and dose redistribution by required images, It could gain not only the correction of the patient set-tup errors but exact dose distribution. Accordingly, the delivery of compensated dose, It makes that we could do Adaptive Targeting Radiotherapy and need Real Time Adaptive Targeting Radiotherapy by reduce beam delivary time.

  • PDF

Comparison of GHG Emission with Activity Data in Korean Railroad Sector (국내 철도부문의 활동도 자료에 따른 온실가스 배출량 비교 연구)

  • Lee, Jae-Young;Rhee, Young-Ho;Kim, Yong-Ki;Jung, Woo-Sung;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.861-864
    • /
    • 2011
  • Since national GHG reduction target by 2020 has been presented in Korea, the role of railroad has been reinforced within transport system due to the allocation of reduction target into sector. So, it is necessary to manage activity data systematically for the calculation of GHG emission in railroad. Now, the activity data of diesel consumption for NIR(National Inventory Report) are provided from oil supply and demand statistics. On the other hands, the activity data collected directly from railroad operating companies are used for GHG & Energy Target Management Act. This study aimed to assess the GHG emissions using two kinds of activity data related to the diesel consumption of railroad in 2009 and 2010. As a result, GHG emissions based on oil supply and demand statistics was 636 thousands ton $CO_{2e}$, but the activity data collected from railroad operating companies showed 649 thousands ton $CO_{2e}$ in 2009. Also, the gap of $CO_{2e}$ emission was increased in 2010. These trends were caused because oil supply and demand statistics included total diesel sales volume during 1 year and the activity data collected from railroad operating companies were the amount of diesel consumption only at railcar operation and maintenance step. In conclusion, it is important to develop the management and verification system of activity data with high reliability to substitute oil supply and demand statistics in railroad sector.

  • PDF

DEVELOPMENT OF A METHOD FOR CONTROLLING GAS CONCENTRATION FOR USE IN C.A EXPERIMENTS

  • Yun, H.S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.662-669
    • /
    • 2000
  • Based on the viscous flow characteristics of gas through capillary tube, a simple and low cost system was developed for controlling gas concentration for use in C.A experiments. The gas flow rate through capillary tube had a linear relationship with pressure, $(length)^{-1}$ and $(radius)^4$ of capillary tube, which agreed well with Hagen-Poiseuille's law. The developed system could control the gas concentration in storage chamber within ${\pm}0.3%$ deviation compared to the preset concentration. The required time for producing target gas concentration in storage chamber was exactly predicted by the model used in this study, and it required much longer time than the calculated time which divided the volume of chamber by flow rate. Therefore, for producing target gas concentration as quickly as possible, it needs to supply higher flow rate of gas during the initial stage of experiment when gas concentration in storage chamber has not reached at target value. It appeared that the developed system was very useful for C.A experiments. Because one could decide a desired flow rate by the prediction model, control flow rate freely and easily by changing pressure in the pressure-regulating chamber and the accuracy was high.

  • PDF

Dosimetric Impact of Ti Mesh on Proton Beam Therapy

  • Cho, Shinhaeng;Goh, Youngmoon;Kim, Chankyu;Kim, Haksoo;Jeong, Jong Hwi;Lim, Young Kyung;Lee, Se Byeong;Shin, Dongho
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.144-148
    • /
    • 2017
  • When a high density metallic implant is placed in the path of the proton beam, spatial heterogeneity can be caused due to artifacts in three dimensional (3D) computed tomography (CT) scans. These artifacts result in range uncertainty in dose calculation in treatment planning system (TPS). And this uncertainty may cause significant underdosing to the target volume or overdosing to normal tissue beyond the target. In clinical cases, metal implants must be placed in the beam path in order to preserve organ at risk (OARs) and increase target coverage for tumors. So we should introduce Ti-mesh. In this paper, we measured the lateral dose profile for proton beam using an EBT3 film to confirm dosimetric impact of Ti-mesh when the Ti-mesh plate was placed in the proton beam pathway. The effect of Ti-mesh on the proton beam was investigated by comparing the lateral dose profile calculated from TPS with the film-measured value under the same conditions.