• Title/Summary/Keyword: target tracking

Search Result 1,262, Processing Time 0.031 seconds

A robust data association gate method of non-linear target tracking in dense cluttered environment (고밀도 클러터 환경에서 비선형 표적추적에 강인한 자료결합 게이트 기법)

  • Kim, Seong-Weon;Kwon, Taek-Ik;Cho, Hyeon-Deok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.109-120
    • /
    • 2021
  • This paper proposes the H∞ norm based data association gate method to apply robustly the data association gate of passive sonar automatic target tracking which is on non-linear targets in dense cluttered environment. For target tracking, data association method selects the measurements within validated gate, which means validated measuring extent, as candidates for the data association. If the extent of the validated gate in the data association is not proper or the data association executes under dense cluttered environment, it is difficult to maintain the robustness of target tracking due to interference of clutter measurements. To resolve this problem, this paper proposes a novel gating method which applies H∞ norm based bisection algorithm combined with 3-σ gate method under Gaussian distribution assumption and tracking error covariance. The proposed method leads to alleviate the interference of clutters and to track the non-linear maneuvering target robustly. Through analytic method and simulation to utilize simulated data of horizontal and vertical bearing measurements, improvement of data association robustness is confirmed contrary to the conventional method.

The Optical Tracking Method of Flight Target using Kalman Filter with DTW (DTW와 Kalman Filter를 결합한 비행표적의 광학추적 방법)

  • Jang, Sukwon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.217-222
    • /
    • 2021
  • EOTS(Electro-Optical Tracking System) is utilized in acquiring visual information to assess a guided missile's performance. As the missile travels so fast, it is almost impossible for operator to re-capture the lost target. The RADAR or telemetry data are used to re-capture the lost target however facilities to receive real time data is required, which constrains selection of tracking site. Unlike aforementioned data, pre-calculated nominal trajectory can be used without communication facility. This paper proposes a method to predict lost target's state by employing nominal trajectory. Firstly, observed trajectory and nominal trajectory are compared using DTW and current target's state is predicted. The predicted state is used as observation in Kalman filter's correction phase to predict target's next state. The plausibility of the proposed method is verified by applying on actual missile trajectory.

Multiple Target DOA Tracking Algorithm Using Measurement Fusion (측정치 융합기법을 이용한 다중표적 방위각 추적 알고리즘)

  • 신창홍;류창수;이균경
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.493-496
    • /
    • 2003
  • Recently, Ryu et al. proposed a multiple target DOA tracking algorithm, which has good features that it has no data association problem and simple structure. But its performance is seriously degraded in the low signal-to-noise ratio. In this paper, a measurement fusion method is presented based on ML(Maximum Likelihood), and the new DOA tracking algorithm is proposed by incorporating the presented fusion method into Ryu's algorithm. The proposed algorithm has a better tracking performance than that of Ryu's algorithm, and it sustains the good features of Ryu's algorithm.

  • PDF

A Study on the TMBE Algorithm with the Target Size Information (표적 크기 정보를 사용한 TMBE 알고리즘 연구)

  • Jung, Yun Sik;Kim, Jin Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.836-842
    • /
    • 2015
  • In this paper, the target size and model based target size estimator (TMBE) algorithm is presented for iimaging infrared (IIR) seeker. At the imaging seeker, target size information is important factor for accurate tracking. The model based target size estimator filter (MBEF) algorithm was proposed to estimate target size at imaging infrared seeker. But, the model based target size estimator filter algorithm need to know relative distance from the target. In order to overcome the problem, we propose target size and model based target size estimator filter (TMBEF) algorithm which based on the target size. The performance of proposed algorithm is tested at target intercept scenario. The experiment results show that the proposed algorithm has the accurate target size estimating performance.

Coherent Multiple Target Angle-Tracking Algorithm (코히어런트 다중 표적 방위 추적 알고리즘)

  • Kim Jin-Seok;Kim Hyun-Sik;Park Myung-Ho;Nam Ki-Gon;Hwang Soo-Bok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.230-237
    • /
    • 2005
  • The angle-tracking of maneuvering targets is required to the state estimation and classification of targets in underwater acoustic systems. The Problem of angle-tracking multiple closed and crossing targets has been studied by various authors. Sword et al. Proposed a multiple target an91e-tracking algorithm using angular innovations of the targets during a sampling Period are estimated in the least square sense using the most recent estimate of the sensor output covariance matrix. This algorithm has attractive features of simple structure and avoidance of data association problem. Ryu et al. recently Proposed an effective multiple target angle-tracking algorithm which can obtain the angular innovations of the targets from a signal subspace instead of the sensor output covariance matrix. Hwang et al. improved the computational performance of a multiple target angle-tracking algorithm based on the fact that the steering vector and the noise subspace are orthogonal. These algorithms. however. are ineffective when a subset of the incident sources are coherent. In this Paper, we proposed a new multiple target angle-tracking algorithm for coherent and incoherent sources. The proposed algorithm uses the relationship between source steering vectors and the signal eigenvectors which are multiplied noise covariance matrix. The computer simulation results demonstrate the improved Performance of the Proposed algorithm.

Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm (복합모델 다차량 추종 기법을 이용한 차량 주행 제어)

  • Moon, Il-Ki;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

Mean Shift Based Object Tracking with Color and Spatial Information (칼라와 공간 정보를 이용한 평균 이동에 기반한 물체 추적)

  • An, Kwang-Ho;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1973-1974
    • /
    • 2006
  • The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local maxima of a similarity measure between the color histograms of the target and candidate image. However, the mean shift tracking algorithm using only color histograms has a serious defect. It doesn't use the spatial information of the target. Thus, it is difficult to model the target more exactly. And it is likely to lose the target during the occlusions of other objects which have similar color distributions. To deal with these difficulties we use both color information and spatial information of the target. Our proposed algorithm is robust to occlusions and scale changes in front of dynamic, unstructured background. In addition, our proposed method is computationally efficient. Therefore, it can be executed in real-time.

  • PDF

Efficient Mean-Shift Tracking Using an Improved Weighted Histogram Scheme

  • Wang, Dejun;Chen, Kai;Sun, Weiping;Yu, Shengsheng;Wang, Hanbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1964-1981
    • /
    • 2014
  • An improved Mean-Shift (MS) tracker called joint CB-LBWH, which uses a combined weighted-histogram scheme of CBWH (Corrected Background-Weighted Histogram) and LBWH (likelihood-based Background-Weighted Histogram), is presented. Joint CB-LBWH is based on the notion that target representation employs both feature saliency and confidence to form a compound weighted histogram criterion. As the more prominent and confident features mean more significant for tracking the target, the tuned histogram by joint CB-LBWH can reduce the interference of background in target localization effectively. Comparative experimental results show that the proposed joint CB-LBWH scheme can significantly improve the efficiency and robustness of MS tracker when heavy occlusions and complex scenes exist.

DNA Coding-Based Intelligent Kalman Filter for Tracking a Maneuvering Target (기동표적 추적을 위한 DNA 코딩 기반 지능형 칼만 필터)

  • 이범직;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.118-121
    • /
    • 2002
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the state of the target, but in the presence of a maneuver, its performance may be seliously degraded. In this paper, to solve this problem and track a maneuvering target effectively, DNA coding-based intelligent Kalman filter (DNA coding-based IKF) is proposed. The proposed method can overcome the mathematical limits of conventional methods and can effectively track a maneuvering target with only one filter by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and the GA-based IKF in computer simulations.

Maneuvering Target Tracking with the Modified VDIE Filter

  • Ahn, Byeong-Wan;Whang, Tae-Hyun;Choi, Jae-Won;Song, Taek-Lyul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.53.6-53
    • /
    • 2001
  • In this paper, we are concerned with a tracking filter algorithm which can track a maneuvering target. Among the novel tracking filter algorithms, the input estimation (IE) filter can be summarized as estimating the unknown maneuver input and compensating the state according to the estimated input, and the variable dimension filter (VDF) can be summarized as detecting the maneuver of target and changing the dimension of the target dynamics to accomodate the maneuver of target They have some goods and bads with respect to each other. The variable dimension filter with input estimation (VDIEF) is constructed by combining the two filtering algorithms. However, it requires too much computational burden while it has good performance. We propose another variable dimension with input estimation ...

  • PDF