• Title/Summary/Keyword: target tracking

Search Result 1,262, Processing Time 0.035 seconds

JPDAS Multi-Target Tracking Algorithm for Cluster Bombs Tracking (자탄 추적을 위한 JPDAS 다중표적 추적알고리즘)

  • Kim, Hyoung-Rae;Chun, Joo-Hwan;Ryu, Chung-Ho;Yoo, Seung-Oh
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.545-556
    • /
    • 2016
  • JPDAF is a method of updating target's state estimation by using posterior probability that measurements are originated from existing target in multi-target tracking. In this paper, we propose a multi-target tracking algorithm for falling cluster bombs separated from a mother bomb based on JPDAS method which is obtained by applying fixed-interval smoothing technique to JPDAF. The performance of JPDAF and JPDAS multi-target tracking algorithm is compared by observing the average of the difference between targets' state estimations obtained from 100 independent executions of two algorithms and targets' true states. Based on this, results of simulations for a radar tracking problem that show proposed JPDAS has better tracking performance than JPDAF is presented.

External Noise Analysis Algorithm based on FCM Clustering for Nonlinear Maneuvering Target (FCM 클러스터링 기반 비선형 기동표적의 외란분석 알고리즘)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2346-2351
    • /
    • 2011
  • This paper presents the intelligent external noise analysis method for nonlinear maneuvering target. After recognizing maneuvering pattern of the target by the proposed method, we track the state of the target. The external noise can be divided into mere noise and acceleration using only the measurement. divided noise passes through the filtering step and acceleration is punched into dynamic model to compensate expected states. The acceleration is the most deterministic factor to the maneuvering. By dividing, approximating, and compensating the acceleration, we can reduce the tracking error effectively. We use the fuzzy c-means (FCM) clustering as the method to divide external noise. FCM can separate the acceleration from the noise without criteria. It makes the criteria with the data made by measurement at every sampling time. So it can show the adaptive tracking result. The proposed method proceeds the tracking target simultaneously with the learning process. Thus it can apply to the online system. The proposed method shows the remarkable tracking result on the linear and nonlinear maneuvering. Finally, some examples are provided to show the feasibility of the proposed algorithm.

Implementation of Disparity Information-based 3D Object Tracking

  • Ko, Jung-Hwan;Jung, Yong-Woo;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.16-25
    • /
    • 2005
  • In this paper, a new 3D object tracking system using the disparity motion vector (DMV) is presented. In the proposed method, the time-sequential disparity maps are extracted from the sequence of the stereo input image pairs and these disparity maps are used to sequentially estimate the DMV defined as a disparity difference between two consecutive disparity maps Similarly to motion vectors in the conventional video signals, the DMV provides us with motion information of a moving target by showing a relatively large change in the disparity values in the target areas. Accordingly, this DMV helps detect the target area and its location coordinates. Based on these location data of a moving target, the pan/tilt embedded in the stereo camera system can be controlled and consequently achieve real-time stereo tracking of a moving target. From the results of experiments with 9 frames of the stereo image pairs having 256x256 pixels, it is shown that the proposed DMV-based stereo object tracking system can track the moving target with a relatively low error ratio of about 3.05 % on average.

Target identification for visual tracking

  • Lee, Joon-Woong;Yun, Joo-Seop;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.145-148
    • /
    • 1996
  • In moving object tracking based on the visual sensory feedback, a prerequisite is to determine which feature or which object is to be tracked and then the feature or the object identification precedes the tracking. In this paper, we focus on the object identification not image feature identification. The target identification is realized by finding out corresponding line segments to the hypothesized model segments of the target. The key idea is the combination of the Mahalanobis distance with the geometrica relationship between model segments and extracted line segments. We demonstrate the robustness and feasibility of the proposed target identification algorithm by a moving vehicle identification and tracking in the video traffic surveillance system over images of a road scene.

  • PDF

Decentralized Control of Multiple Agents for Optimizing Target Tracking Performance and Collision Avoidance (표적 추적 성능 최적화 및 충돌 회피를 위한 다수 에이전트 분산 제어)

  • Kim, Youngjoo;Bang, Hyochoong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.693-698
    • /
    • 2016
  • A decentralized control method is proposed to enable a group of robots to achieve maximum performance in multisensory target tracking while avoiding collision with the target. The decentralized control was designed based on navigation function formalism. The study showed that the multiple agent system converged to the positions providing the maximum performance by the decentralized controller, based on Lyapunov and Hessian theory. An exemplary simulation was given for a multiple agent system tracking a stationary target.

GA-Based Fuzzy Kalman Filter for Tracking the Maneuvering Target

  • Noh, Sun-Young;Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1500-1504
    • /
    • 2005
  • This paper proposes the design methodology of genetic algorithm (GA)-based fuzzy Kalman filter for tracking the maneuvering target. The performance of the standard Kalman Filter (SKF) has been degraded because mismatches between the modeled target dynamics and the actual target dynamics. To solve this problem, we use the method to estimate the increment of acceleration by a fuzzy system using the relation between maneuver filter residual and non-maneuvering one. To optimize the fuzzy system, a genetic algorithm (GA) is utilized and this is then tuned by the fuzzy logic correction. Finally, the tracking performance of the proposed method has been compared with those of the input estimation (IE) technique and the intelligent input estimation (IIE) through computer simulations.

  • PDF

A Study on the TWS Tracking Filter for Multi-Target Tracking (다중표적 추적을 위한 TWS추적필터에 관한 연구)

  • 이양원;서진헌;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.411-421
    • /
    • 1992
  • In the conventional track while scan (TWS) system, there are two major functions to be performed : detection and tracking. These two functions are normally designed and optimised independently. So TWS algorithm ignores the available decision features that can help in resolving the plot-to-track association ambiguity. Therefore conventional TWS system cna't track the targets in a densed multi-target environment. This paper presents a new TWS algorithm for multi-target track to solve the existing TWS system problem in clutter environment. The algorithm proposed in this paper is derived by modifying the part of joint probabilistic data association (JPDA) algotithm to get the one to one correspondence instead of multiple correspondence and combined with maneuvering detection logic so that it could also track the low maneuvering targets. Simulations to confirm the performance are done in crossing, parallel and maneuvering target. The proposed algorithm was successfully tracking targets above target situations.

  • PDF

The Design of Target Tracking System Using GA Based FBFN (유전 알고리즘 기반 퍼지 기저 함수 확장을 이용한 표적 추적 시스템 설계)

  • Lee, Bum-Jik;Joo, Young-Hoon;Chang, Wook;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.525-527
    • /
    • 1999
  • In this paper, we propose the target tracking system using fuzzy basis function expansion (FBFN) based on genetic algorithm (GA). In general, the objective of target tracking is to predict the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical method, the parameter uncertainty and the environmental noise may deteriorate the performance of the system. To resolve these problems, we apply artificial intelligent technique to the tracking control of moving targets. The proposed method combines the advantages of both traditional and intelligent technique. The result of numerical simulation shows the effectiveness of the proposed method.

  • PDF

The Implementation of the Realtime Visual Tracking of Moving Terget by using Kalman Filter (칼만필터를 이용한 이동 목표물의 실시간 시각추적의 구현)

  • 임양남;방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.254-258
    • /
    • 1996
  • In this paper, we proposed realtime visual tracking system of moving object for 2D target using extended Kalman Filter Algorithm. A targeting marker are recongnized in each image frame and positions of targer object in each frame from a CCD camera while te targeting marker is attached to the tip of the SCARA robot hand. After the detection of a target coming into any position of the field-of-view, the target is tracked and always made to be located at the center of target window. Then, we can track the moving object which moved in inter-frames. The experimental results show the effectiveness of the Kalman filter algorithm for realtime tracking and estimated state value of filter, predicting the position of moving object to minimize an image processing area, and by reducing the effect by quantization noise of image

  • PDF

Design of an adaptive tracking algorithm for a phased array radar (위상배열 레이다를 위한 적응 추적 알고리즘의 설계)

  • Son, Keon;Hong, Sun-Mog
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.541-547
    • /
    • 1992
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three-dimensional adaptive tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track update illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver detector. A detailed simulation is conducted to test the validity of our tracking algorithm for encounter geometries under various conditions of maneuver.

  • PDF