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1. INTRODUCTION 

 
Modeling of the maneuvering target system accurately is 

one of the most important problems when using the Kalman 
filter for target tracking. This problem has been studied in the 
field of state estimation over decades. If the system model of a 
maneuvering target is not correct, track loss will occur easily. 
Development of an accurate system model requires maneuver 
detection and estimation of the magnitude of maneuver. 
Usually it is not impossible to detect the exact onset time of 
maneuver. To solve this problem, various techniques have 
been investigated and applied. Singer proposed a target 
tracking model in which maneuver was assumed as a random 
process with known exponential autocorrelation [1]. Since the 
Singer’s method, a generalized likelihood ratio (GLR) was 
computed when the two hypotheses corresponded to the 
presence or absence of a maneuver [2]. A common method in 
the application uses non-maneuvering target model for 
tracking a target moving at a constant velocity and then 
switches to a tracking filter for an appropriate maneuvering 
model, when the target maneuver is detected. 

The input estimation technique for tracking a maneuvering 
target is proposed by Chan et al [4]. In this method, the 
magnitude of the acceleration is identified by the least-squares 
estimation when a maneuver is detected. Then the estimated 
acceleration is used in conjunction with a standard Kalman 
filter to compensate the state estimate of the target. However, 
the difference in the assumed and the actual maneuver onset 
time eventually increases the tracking errors after a target 
starts to maneuver and its method lead to large tracking errors 
during the target maneuvering model [3-5]. Furthermore, the 
filter uses the only measurements at the starting point of 
sliding window to initialize the augmented filter. These 
processes may increase the tracking error. 

To solve this problem and decrease the tracking error 
effectively, we propose GA-based Fuzzy Kalman filter in this 
paper. In the maneuvering target model, the acceleration is 
determined by the intelligent input estimation (IIE) that means 
the estimation of the unknown acceleration input within a 
fixed range by a fuzzy system using the relation between 
maneuvering filter residual and non-maneuvering one [7-8]. 
The genetic algorithm (GA) is utilized to optimize a fuzzy 
system. Then, this filter is implemented by two-stage 

measurement corrections which is the functional 
characteristics of the fuzzy linguistic decision scheme. Its 
method is using single-input single-output fuzzy model with 7 
rules.  

Section 2 of this paper describes maneuvering target model 
and summarizes the input estimation technique as previous 
works, and the details of the proposed method are described in 
Section 3. In Section 4, the tracking performance of the 
proposed method is compared with those of the input 
estimation technique and the intelligent input estimation (IIE) 
[8]. Conclusion is provided in Section 5. 
 

2. PRELIMINARIES 
 
2.1 Maneuvering target model  

We assume that the target moves in a plane which is the 
two-dimensional case. The discrete time equation model for a 
maneuvering target and a non-maneuver are described for 
each axis by 

)()()()1( kvkGukFxkx ++=+          (1) 
)()()1( kvkFxkx +=+              (2) 
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where  Tyyxxkx ][)( &&=  is the state vector, the 

position and velocity of target, T  is the time sampling, 
)(ku is unknown maneuver input and )(kv  is the process 

noise, and zero mean white Gaussian noise with known 
covariance Q .  

The measurement equation is  
 )()()( kwkHxkz +=              (3) 

where TH ]01[= is the measurement matrix, 
and )(kw  is the measurement noise, and zero mean white 
known covariance R . Both )(kw  and )(kv  are assumed 
to be uncorrelated. 
 
2.2 Input estimation technique  

In this model, acceleration is treated as an additive input 
term in the system equation [6]. A Kalman filter consists of the 
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hypothetical one based on the maneuvering model (1) and the 
actual one based on the non-maneuvering model (2). From the 
innovation of the non-maneuvering filter based on (2), the 
unknown acceleration )(ku  is to be detected, estimated, 
and compensated to correct the state estimate. For the 
convenience, the present time is denoted by k , and it is 
assumed that the target starts maneuvering at maneuver onset 
time )( sk − . 

According to the Kalman filter, the predicted state of the 
target with maneuver at )( sk −  is      

[ ] ( ) )()(1*ˆ)()1(*ˆ iziFKiixHiKIFix +−−=+ (4)                                                                    

)1,...,( −−= kski  
where the mismatched non-maneuvering filter based on (2) 
will be denoted by an asterisk, k is the Kalman gain of the 
non-maneuvering filter and the initial condition is the correct 
estimate before the maneuver started 

( ) ( )11ˆ11*ˆ −−−=−−− skkxskkx     (5) 

The solution of discrete time state equation (4) in terms of (5) 
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The recursion for state estimation from the hypothetical 
correct filter based on (3) in the case of the known input is the 
following 

( ) ( ) )()()(1ˆ)(1ˆ iGuiziFKiixiiix ++−Φ=+   (7) 
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The innovation of the correct filter, zero mean white sequence 
with covariance )1( +iS  are 

( )iixHiziv 1ˆ)1()1( +−+=+          (8) 

and the innovation corresponding to the non-maneuvering 
filter (4) are 

( )iixHiziv 1*ˆ)1()1(* +−+=+        (9) 

Then the estimated acceleration is used in conjunction 
with a standard Kalman filter to compensate the state estimate 
of the target. This method uses the only measurements at the 
starting point of sliding window to initialize the augmented 
filter. There processes may increases the tracking error. 

 
3. THE GA-BASED FUZZY KALMAN FILTER 

 
3.1 The intelligent input estimation (IIE) 
  In this section, in order to improve the tracking performance,  
we propose the GA-based Fuzzy Kalman filter algorithm that 
is the off-line optimization of a fuzzy system. The acceleration 
is determined by the IIE [8]. The IIE means the estimation of 
the unknown acceleration input by a fuzzy system using the 
relation between maneuvering filter residual and 
non-maneuvering one. 
For the Kalman filter with the maneuvering input (1), the 
residual of the estimation is defined as  

))1(ˆ()1()1(~ +−+=+ kxHkzkzerror       (10) 
Acceleration term, in this model, is considered as an additive 
input to the system [5]. Accordingly, acceleration residual and 
its variation for the maneuvering target based on the 
maneuvering model (1) are 

)(ˆ)()(*)(1 kzkzkzk *−==c       (11) 

)1()()()(2 −−=D= ** kzkzkzkc     (12) 
The unknown acceleration input )(ku j

 is inferred by a 

double-input single-input (DISO) fuzzy system, of which the 
j th fuzzy IF-THEN rule is represented 

jjjj uyAkAR   is    then  ,  is  )(  and    is    If  :  2211 cc  

where two premise variables )(1 kx  and )(2 kx  are the 
non-maneuvering filter residual )(* kz  and the difference 
between non-maneuvering residual )(* kz and maneuvering 
filter residual )1( −kz , respectively. A consequence variable 
y  is the estimated acceleration input )(ku j

. The Gaussian 

membership 
ijA with the center ijc  and the standard 

deviation 
ijσ  has the following membership grade.   
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By using singleton fuzzifier, product inference and 
center-average defuzzifier )(ku j

can be estimated in the 

following form 
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We utilize the GA, in this subsection, in order to optimize 
the parameters in both the premise part and the consequence 
part of the fuzzy system simultaneously.  
The optimization process is performed for the direction of 
minimizing the tracking errors to some acceleration levels 
within the possible range of the target acceleration [9]. 

Obviously the fuzzy system should be designed such that 
the difference between the actual acceleration input and the 
estimated one is minimized. 
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The GA represents the searching variables of the given 
optimization problem as a chromosome containing one or 
more sub-strings. In this case, the searching variables are the 
center ijc  and the standard deviation ijσ  for a Gaussian 

membership function of the fuzzy set ijA  and the singleton 

output jû . A convenient way to convey the searching 
variables into a chromosome is to gather all searching 
variables associated with the j th fuzzy rule into a string and 
to concatenate the strings as  

 
{ },,,,, 2211 jjjjjj qccS σσ=  

{ }MSSSS ,...,, 21=  

where 
jS  is the real coded parameter substring of the j th 

fuzzy rule in an individual S . At the same time and to 

identify the number of fuzzy rules, we utilize the binary coded 
rule number string, which assigns a 1 or 0 for a valid or 
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invalid rule, respectively. 
  Fig. 1 illustrates the structure of the chromosome for the 
GA-based intelligent Kalman filter, where the initial 
population is made up with initial individuals to the extent of 
the population size.  

Each individual is evaluated by a fitness function. Since 
the GA originally searches the optimal solution so that the 
fitness function value is maximized, mapping the objective 
function (16) to the fitness function is necessary. Furthermore, 
since it is strongly desired that we reduce the number of the 
fuzzy IF-THEN rules in a hardware implementation and a 
computation resource point of view is strongly desired, we use 
the fitness function of the form 

1
1

1
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+
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Jf ll           (16) 

where l  is a positive scalar, which adjust the weight 
between the error and the rule number. 
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Fig. 1 Decision strings in a chromosome 

3.2 Fuzzy logic correction method 
In this subsection, we use the Takagi-Segno (T-S) fuzzy 

system and the optimized Fuzzy Kalman filter which is state 
prediction of maneuvering filter is implemented by tow-stages 
of measurement corrections. The first method of measurement 
correction is to define the measurement residual (10) and then 
the fuzzy correction gain is defined by  

[ ])1(~)1( +=+ kzFCkF errorcg         (17) 

where FC(.) presents the functional characteristics of the fuzzy 
linguistic decision scheme. 

Consider a single-input-single-output (SISO) fuzzy system 
with the linguistic rules. 

jjjj ByAR 111   is    then  ,  is    If  :  ,7)1,(j cL=  

where input variables, 1c  is the filter residual 

( )1~ +kz error  and a consequent variable jy  is the fuzzy 

correction gain )1( +kFcg
for the 7th  fuzzy rule. The 

ijA and ijB are the membership function, in order for a fuzzy 

rule base to be complete, it must contain the following seven 
rules whose If parts constitute the linguistic term sets.  

If errorz~  is PB,  Then F  is PB, 

If errorz~  is PM,  Then F  is PM, 

If errorz~  is PS,  Then F  is PS, 

If errorz~  is ZR,  Then F  is ZR, 

If errorz~  is NS,  Then F  is NS, 

If errorz~  is NM,  Then F is NM, 

If errorz~  is NB,  Then F  is NB, 

The Fig. 2 is shown the decision making rule. 

-1.0 -0.4 -0.1-0.7

NB NS ZRNM PS PBPM

0.1 0.7 1.00.4  
Fig. 2 The membership function for estimation error 

The decision making rules can be implemented as 
)1()1( ~ +=+ kk j

z
j

Fcg error
mm , where j

Fcg
m is the 

membership value of the fuzzy gain with respect to each fuzzy 
subset. The defuzzification strategy is the following form. 
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where jc is the mean value element of 1-level cut set with 

respect to each fuzzy subset. 
The fuzzy logic correction array for the tracking problem 

becomes [10]  
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Then the measurement state update under the FC is 
)1()1(ˆ)1(ˆ +++=+ kFkkxFkx cgayFC  (20) 

The second measurement correction is the Kalman gain 
correction and its associated updating equations of the state 
estimation and the estimation error covariance are defined by 

[ ])1(ˆ)1()1(ˆ)11(ˆ kkxHkzKkkxkkx FCFC +−+++=++  (21) 

[ ] ++−+++= )1(ˆ)1()1(ˆ kkxHkzKkkx FC
 

( ))1()1( +−+ kKHFkF cgaycgay  
TKkKSkkPkkP )()1()11( −+=++  (22) 

where the Kalman gain matrix is determined by 
[ ] 1)1()1( −

+++= RHkkHpHkkpK TT  (23) 

  This proposed method filtering algorithm can be replaced 
for the proposed GA-based Fuzzy Kalman filter method as 
follows. 

( ) ( )kkxFkkx ˆ1ˆ =+              (24a) 

)(ˆ)()(*)(1 kzkzkzk *−==c       (24b) 

)(ˆ)1(ˆ)1(ˆ kuGkkxkkx ++=+        (24c) 

))1(ˆ()1()1(~ +−+=+ kxHkzkz error
   (24d) 

[ ])1(~)1( +=+ kzFCkF errorcg         (24e) 

rHkkHpkS T ++=+ )1()1(         (24f) 
TT GqGFkkFPkkP +=+ )|()|1(  (24g) 

)1()1()1( 1 ++=+ − kSHkkPkK T    (24h) 
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[ ])1(ˆ)1()1(ˆ)11(ˆ kkxHkzKkkxkkx FCFC +−+++=++  (24i) 
TKkKSkkPkkP )()1()11( −+=++    (24j) 

 The proposed method is illustrated in Fig. 3. 
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Fig. 3 GA-based Fuzzy Kalman filter algorithm 

 
4. SIMULATION RESULTS 

 
In this subsection, the simulation studies were performed to 

compare the input estimation and the proposed method. The 
target scenario is assumed as an incoming anti-ship missile on 
x-y plan [13]. The target starts from an initial position is at 
[ ]kmkm 5.21,9.72 , and its a constant velocity is at 

skm /3.0  in a °− 150  line to the x -axis.. For the x  
and y  axes, the standard deviation of the zero mean white 
measurement noise is km5.0  and that of a random 
acceleration noise is 2/001.0 skm . The sampling time 
T is 1 s . In the Figure 4, the lateral acceleration maneuvers 
starts at 80 s  and the corresponding target motion is 
illustrated in Fig. 5 

  The initial parameters of the GA are presented in Table 1. 
The maximum acceleration in put for whole simulations is 

assumed to be 2/1.0 skm . The fuzzy rules identified off-line 
for the acceleration in put )/(01.0)(01.0 2

1 skmku <<−   
are shoed in Table 2, for )/(1.0)(01.0 2

2 skmku <<  in 
Table 3, and for )/(01.0)(1.0 2

3 skmku −<<−  in Table 4 
[8].  

 

Fig. 4 Acceleration inputs ( 2/ skm ) 

 
Fig. 5 The motion of incoming anti-ship missile 

Table 1 The initial parameters of the GA 
Parameters Values 

Maximum Generation 300 
Maximum Rule Number 50 

Population Size 500 
Crossover Rate 0.9 
Mutation Rate 0.01 

l  0.95 
 

Table 2 Fuzzy rules identified for )(1 ku  

Parameters identified for )(010)(010 2
1 km/s .ku. <<−  No. of 

rule 
1c  1σ  2c  2σ  û  

1 0.229 0.707 1.205 2.483 0.0088 
2 0.116 1.838 1.236 0.707 -0.0085 
3 0.746 0.028 1.488 2.199 -0.0003 
4 1.684 0.968 1.625 2.189 0.0018 
5 1.459 0.661 -1.233 0.062 0.0081 
6 -0.189 0.977 -0.626 0.249 -0.0094 

 
Table 3 Fuzzy rules identified for )(2 ku  

Parameters identified for )(1.0)(01.0 2
2 km/s ku ££  No. of 

rule 
1c  1σ  2c  2σ  û  

1 -0.010 0.585 1.367 0.065 0.0302 
2 0.972 0.046 0.999 1.781 0.0419 
3 0.636 0.104 1.435 0.470 0.0106 
4 0.277 1.829 1.092 1.017 0.0264 
5 1.464 0.746 1.517 1.669 0.0524 
6 -0.162 0.839 -1.087 1.104 0.0123 
7 0.162 1.162 -0.428 1.955 0.0557 
8 0.833 1.099 -0.963 0.471 0.0152 
9 -0.212 0.016 -0.382 0.376 0.0585 

 
Table 4 Fuzzy rules identified for )(3 ku  

Parameters identified for )(01.0)(1.0 2
3 km/s ku −££−  No. of 

rule 
1c  1σ  2c  2σ  û  

1 2.778 1.121 -0.638 1.124 -0.0530 
2 0.941 1.486 1.259 0.306 -0.0471 
3 0.879 1.739 0.919 0.612 -0.0402 
4 2.065 0.558 1.633 1.875 -0.0289 
5 1.137 1.279 1.763 1.943 -0.0221 
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6 0.895 0.240 1.452 2.693 -0.0477 
7 -2.085 0.829 -0.652 2.908 -0.0172 
8 -0.263 0.336 -0.736 2.098 -0.0396 
9 1.596 3.252 0.203 0.229 -0.0279 

 
The simulation results over 100 runs are shown in Fig. 7, the 
proposed method had much better tracking performance than 
the IIE algorithm and IE algorithm. 
 

 
(a) Normalized position error 

 

(b) Normalized velocity error 

Fig. 6 The simulation results 

 
5. CONCLUSION 

 
  In this paper, we have developed the GA-based IIE method 
as an intelligent tracking method for a maneuver target. In the 
proposed method, the acceleration was determined by IIE 
method which is the estimation of the acceleration input by a 
fuzzy system using the relation between maneuvering filter 
residual and non-maneuvering one. The GA was utilized to 
optimize a fuzzy system. Then, this filter is implemented by 
two-stage measurement corrections. In computer simulation, 
we had much better tracking performance than the IIE 
algorithm and IE algorithm. 
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