• Title/Summary/Keyword: target quality

Search Result 2,193, Processing Time 0.031 seconds

Threshold Values of Institutional Quality on FDI Inflows: Evidence from Developing Economies

  • LEE, Sunhae
    • The Journal of Industrial Distribution & Business
    • /
    • v.12 no.10
    • /
    • pp.31-41
    • /
    • 2021
  • Purpose: This study estimates the threshold values of institutional quality through investigating the non-linear effect of six sub-indices of Worldwide Governance Indicators on FDI inflows in 34 developing countries in Asia and Eastern Europe over the period from 2000-2017. Research Design, data and methodology: GMM EGLS is employed which does not include the lagged value of the dependent variable as an independent variable. As a proxy for the institutional quality, either one of the six sub-indices of WGI from World Bank or the composite index obtained through a principal component analysis is used in a separate model. Results: An improvement in institutional quality, when the quality stays below a certain threshold level, does not increase FDI inflows, and only when the quality is above the threshold, it can positively influence FDI inflows. The threshold values of political stability and absence of violence, government effectiveness, and rule of law are relatively higher than those of the other dimensions of WGI. Conclusion: Institutional quality of the developing economies of Asia and Eastern Europe has a non-linear effect on FDI inflows. The target countries need to upgrade their institutional quality above the threshold in order to attract more FDIs.

The Patient Specific QA of IMRT and VMAT Through the AAPM Task Group Report 119 (AAPM TG-119 보고서를 통한 세기조절방사선치료(IMRT)와 부피적세기조절회전치료(VMAT)의 치료 전 환자별 정도관리)

  • Kang, Dong-Jin;Jung, Jae-Yong;Kim, Jong-Ha;Park, Seung;Lee, Keun-Sub;Sohn, Seung-Chang;Shin, Young-Joo;Kim, Yon-Lae
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.255-263
    • /
    • 2012
  • The aim of this study was to evaluate the patient specific quality assurance (QA) results of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) through the AAPM Task Group Report 119. Using the treatment planning system, both IMRT and VMAT treatment plans were established. The absolute dose and relative dose for the target and OAR were measured by using an ion chamber and the bi-planar diode array, respectively. The plan evaluation was used by the Dose volume histogram (DVH) and the dose verification was implemented by compare the measured value with the calculated value. For the evaluation of plan, in case of prostate, both IMRT and VMAT were closed the goal of target and OARs. In case of H&N and Multi-target, IMRT was not reached the goal of target, but VMAT was reached the goal of target and OARs. In case of C-shape(easy), both were reached the goal of target and OARs. In case of C-shape(hard), both were reached the goal of target but not reached the goal of OARs. For the evaluation of absolute dose, in case of IMRT, the mean of relative error (%) between measured and calculated value was $1.24{\pm}2.06%$ and $1.4{\pm}2.9%$ for target and OAR, respectively. The confidence limits were 3.65% and 4.39% for target and OAR, respectively. In case of VMAT the mean of relative error was $2.06{\pm}0.64%$ and $2.21{\pm}0.74%$ for target and OAR, respectively. The confidence limits were 4.09% and 3.04% for target and OAR, respectively. For the evaluation of relative dose, in case of IMRT, the average percentage of passing gamma criteria (3mm/3%) were $98.3{\pm}1.5%$ and the confidence limits were 3.78%. In case of VMAT, the average percentage were $98.2{\pm}1.1%$ and the confidence limits were 3.95%. We performed IMRT and VMAT patient specific QA using TG-119 based procedure, all analyzed results were satisfied with acceptance criteria based on TG-119. So, the IMRT and VMAT of our institution was confirmed the accuracy.

A Study on the Stability Control of Injection-molded Product Weight using Artificial Neural Network (인공신경망을 이용한 사출성형품의 무게 안정성 제어에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.773-787
    • /
    • 2020
  • In the injection molding process, the controlling stability of products quality is a very important factor in terms of productivity. Even when the optimum process conditions for the desired product quality are applied, uncontrollable external factors such as ambient temperature and humidity cause inevitable changes in the state of the melt resin, mold temperature. etc. Therefore, it is very difficult to maintain prodcut quality. In this study, a system that learns the correlation between process variables and product weight through artificial neural networks and predicts process conditions for the target weight was established. Then, when a disturbance occurs in the injection molding process and fluctuations in the weight of the product occur, the stability control of the product quality was performed by ANN predicting a new process condition for the change of weight. In order to artificially generate disturbance in the injection molding process, controllable factors were selected and changed among factors not learned in the ANN model. Initially, injection molding was performed with a polypropylene having a melt flow index of 10 g/10min, and then the resin was replaced with a polypropylene having a melt floiw index of 33 g/10min to apply disturbance. As a result, when the disturbance occurred, the deviation of the weight was -0.57 g, resulting in an error of -1.37%. Using the control method proposed in the study, through a total of 11 control processes, 41.57 g with an error of 0.00% in the range of 0.5% deviation of the target weight was measured, and the weight was stably maintained with 0.15±0.07% error afterwards.

A Study on Estimations and Long-term Forecasts of SO$_2$ Pollution in Each City & County of Korea (시군별 이산화황(SO$_2$) 오염도의 현황 진단과 장기 예측에 관한 연구)

  • 김용준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.19-29
    • /
    • 1997
  • It is more likely that the degree of air quality degradation that we have faced would be much lessen, if integrated management of air pollution control and assessment had been fully enforced by the local administrations, not by the centralized environmental agency in the first place. As the selfgoverning local administrations have been established since 1995, the need for air quality control by the local administration or local agency is getting the ground. However, in practice, air quality control by the local administration rarely put into effect due to lack of basic data which cover the present trends of air quality in each local city or county and are necessary for decision making. The emissions of SO$_2$ in each city and county of Korea in 1993 were calculated in this study, based on energy consumptions and emission factors. The ambient concentrations of SO$_2$ also were estimated by applying modified Miller-Holtzworth model. Observed and estimated concentrations of SO$_2$ showed that about 17.5 percents of cities and counties in the country were more polluted than the target value, 20ppb/year. The emissions and ambient concentrations of SO$_2$ in each city and county in 2000, 2005, and 2010 were also forecasted, assumed business as usual senario. It was shown that, in 2010, the emissions of SO$_2$ will be 2.8 times more than those of 1993 and much of them are from industrial sector. Also shown that 38.3 percents of cities and counties will be more polluted than the target value and most of them are polluted areas in 1993. The methods and results of this study could be used in developing the efficient reduction strategies in each city and county.

  • PDF

Impacts on Residence Time and Water Quality of the Saemangeum Reservoir Caused by Inner Development (새만금 내부개발이 체류시간 및 수질변화에 미치는 영향)

  • Yoo, Sang-Cheol;Suh, Seung-Won;Lee, Hwa-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.186-197
    • /
    • 2012
  • In order to understand hydrodynamic and water quality changes on the Saemangeum reservoir in accordance to inner development plan, intensive numerical simulations using EFDC have been done. Due to inner dike construction and proposed dredging plans, stratification might occur and yield flow field change. It should be noticed that very conditional gate operation schedule adjusting target water elevation of -1.5 meter causes severe stratification and hence plays an important role in poor water qualities. By using random walk particle tracking residence simulations, it is found that hydrodynamic characteristics depends greatly on riverine inflow conditions. It is also inferred that the northern part of the Mangyeong reservoir behaves as a dead zone and acts as major reasoning of water quality deterioration owing to benthic flux from long-term residing settled sediment.

Degradation of residual pharmaceuticals in water by UV/H2O2 advanced oxidation process (UV/H2O2 고도산화기술을 이용한 수중 잔류의약물질 제거)

  • Park, Chinyoung;Seo, Sangwon;Cho, Ikhwan;Jun, Yongsung;Ha, Hyunsup;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.469-480
    • /
    • 2019
  • This study was conducted to evaluate the degradation and mineralization of PPCPs (Pharmaceuticals and Personal Care Products) using a CBD(Collimated Beam Device) of UV/H2O2 advanced oxidation process. The decomposition rate of each substance was regarded as the first reaction rate to the ultraviolet irradiation dose. The decomposition rate constants for PPCPs were determined by the concentration of hydrogen peroxide and ultraviolet irradiation intensity. If the decomposition rate constant is large, the PPCPs concentration decreases rapidly. According to the decomposition rate constant, chlortetracycline and sulfamethoxazole are expected to be sufficiently removed by UV irradiation only without the addition of hydrogen peroxide. In the case of carbamazepine, however, very high UV dose was required in the absence of hydrogen peroxide. Other PPCPs required an appropriate concentration of hydrogen peroxide and ultraviolet irradiation intensity. The UV dose required to remove 90% of each PPCPs using the degradation rate constant can be calculated according to the concentration of hydrogen peroxide in each sample. Using this reaction rate, the optimum UV dose and hydrogen peroxide concentration for achieving the target removal rate can be obtained by the target PPCPs and water properties. It can be a necessary data to establish design and operating conditions such as UV lamp type, quantity and hydrogen peroxide concentration depending on the residence time for the most economical operation.

Multi-channel input-based non-stationary noise cenceller for mobile devices (이동형 단말기를 위한 다채널 입력 기반 비정상성 잡음 제거기)

  • Jeong, Sang-Bae;Lee, Sung-Doke
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.945-951
    • /
    • 2007
  • Noise cancellation is essential for the devices which use speech as an interface. In real environments, speech quality and recognition rates are degraded by the auditive noises coming near the microphone. In this paper, we propose a noise cancellation algorithm using stereo microphones basically. The advantage of the use of multiple microphones is that the direction information of the target source could be applied. The proposed noise canceller is based on the Wiener filter. To estimate the filter, noise and target speech frequency responses should be known and they are estimated by the spectral classification in the frequency domain. The performance of the proposed algorithm is compared with that of the well-known Frost algorithm and the generalized sidelobe canceller (GSC) with an adaptation mode controller (AMC). As performance measures, the perceptual evaluation of speech quality (PESQ), which is the most widely used among various objective speech quality methods, and speech recognition rates are adopted.

Evaluation of Applicability and Economical Efficiency of Peroxone Process for Removal of Micropollutants in Drinking Water Treatment (정수처리에서 미량유해물질 제거를 위한 Peroxone 공정의 적용성 및 경제성 평가)

  • Son, Hee-Jong;Kim, Sang-Goo;Yeom, Hoon-Sik;Choi, Jin-Taek
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.905-913
    • /
    • 2013
  • We compared the applicability and economical efficiency of peroxone process with those of ozone process in the existing water treatment plant on downstream of Nakdong River. After comparing the peroxone process for removing geosmin with the ozone process in lab scale test, peroxone process showed much higher removal efficiency than the ozone process at the same ozone dosage. Proper range of $H_2O_2/O_3$ ratio were 0.5~1.0 and the half-life of geosmin was about 5.5~6.8 min when the $H_2O_2/O_3$ ratio was set to 0.5 during 1~2 mg/L of ozone dosage. Peroxone process could reduce the ozone dosage about 50 to maximum 30% for the same geosmin removal efficiency compared to the ozone process in the pilot scale test. In case of 1,4-dioxane treatment, peroxone process could have 3~4 times higher efficiency than ozone process at the same ozone dosage. The results of estimating the economical efficiency of ozone and peroxone process for treating geosmin and 1,4-dioxane by using pilot scale test, in case of the removal target was set to 85% for these two materials, the cost of peroxane process could be reduced about 1.5 times compared to ozone process, and in the same production cost peroxone process could have 2~3 times higher removal efficiency than ozone process. The removal efficiency by peroxone process showed a large difference depending on the physicochemical characteristics of target materials and raw water, therefore detailed examination should be carried out before appling peroxone process.

A Maintenance Model Applying Loss Function Based on the Cpm+ in the Process Mean Shift Problem in Which the Production Volume Decreases (생산량이 감소하는 공정평균이동 문제에서 Cpm+ 기준의 손실함수를 적용한 보전모형)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.1
    • /
    • pp.45-50
    • /
    • 2021
  • Machines and facilities are physically or chemically degenerated by continuous usage. The representative type of the degeneration is the wearing of tools, which results in the process mean shift. According to the increasing wear level, non-conforming products cost and quality loss cost are increasing simultaneously. Therefore, a preventive maintenance is necessary at some point. The problem of determining the maintenance period (or wear limit) which minimizes the total cost is called the 'process mean shift problem'. The total cost includes three items: maintenance cost (or adjustment cost), non-conforming cost due to the non-conforming products, and quality loss cost due to the difference between the process target value and the product characteristic value among the conforming products. In this study, we set the production volume as a decreasing function rather than a constant. Also we treat the process variance as a function to the increasing wear rather than a constant. To the quality loss function, we adopted the Cpm+, which is the left and right asymmetric process capability index based on the process target value. These can more reflect the production site. In this study, we presented a more extensive maintenance model compared to previous studies, by integrating the items mentioned above. The objective equation of this model is the total cost per unit wear. The determining variables are the wear limit and the initial process setting position that minimize the objective equation.

Measurement of Classroom Air Quality in large cities in autumn (가을철 도심지역 학교교사의 실내환경 측정연구)

  • Kim, Yun-Deok;Seo, Dong-Yeon
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.37-42
    • /
    • 2010
  • Together with the concern about the indoor air quality as sick house syndrome, the Ministry of Environment announced "Indoor Air Quality Control Law for the Multi Purpose Facility," which made the interests to be focused in the urgent understanding of current condition and preparation of measures about the indoor air pollution. The law was revised to obligatorily notify the amount of Formaldehyde and Volatile Organic Compounds in the case of newly constructed apartments with more than 100 houses. School also have its own indoor air quality guideline. Indoor air quality in school is very important because, children who very weak to indoor pollutants reside long time in there. The purpose of this paper is to to survey indoor air quality in school by field measurement. Field measurements were performed in 11 schools which were selected from 3 major cities(Incheon, Dae-jeon, chuncheon) in korea, Totally concentration of indoor pollutants were determined in 32 classroom. Target air pollutants were TVOC, formaldehyde, dust, CO, CO2. For the result of this investigation, Indoor air quality in classroom was very poor and it was found that some pollutants(TVOC, float bacteria) exceed the guideline.