• Title/Summary/Keyword: target quality

Search Result 2,200, Processing Time 0.032 seconds

Subjective Video Quality Evaluation of H.265/HEVC Encoded Low Resolution Videos for Ultra-Low Band Transmission System (초협대역 전송 시스템상에서 H.265/HEVC 부호화 저해상도 비디오에 대한 주관적 화질 평가)

  • Uddina, A.F.M. Shahab;Monira, Mst. Sirazam;Chung, TaeChoong;Kim, Donghyun;Choi, Jeung Won;Jun, Ki Nam;Bae, Sung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1085-1095
    • /
    • 2019
  • In this paper, we perform a subjective quality assessment on low-resolution surveillance videos, which are encoded with a very low target bit-rate to use in an ultra-low band transmission system and investigate the encoding effects on the perceived video quality. The test videos are collected based on their spatial and temporal characteristics which affect the perceived quality. H.265/HEVC encoder is used to prepare the impaired sequences for three target bit-rates 20, 45, and 65 kbps and subjective quality assessment is conducted to evaluate the quality from a viewing distance of 3H. The experimental results show that the quality of encoded videos, even at target bit-rate of 45 kbps can satisfy the users. Also we compare objective image/video quality assessment methods on the proposed dataset to measure their correlation with subjective scores. The experimental results show that the existing methods poorly performed, that indicates the need for a better quality assessment method.

Water Quality Management Measures for TMDL Unit Watershed Using Load Duration Curve (수질오염총량 단위유역별 LDC(Load Duration Curve, 부하지속곡선) 적용을 통한 수질관리 대안 모색 - 금호강 유역 대상)

  • Yun, Soyoung;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.429-438
    • /
    • 2013
  • This study was to develop effective water quality management measures using LDC (Load Duration Curve) curves for TMDL (Total Maximum Daily Loads) unit watershed. Using LDC curves, major factors for BOD and T-P concentration loads generation (i.e. point source or non-point source) in the case study area (Geumho river basin) were found for different hydrologic conditions. Different measures to deal with the pollutant loads were suggested to establish BMPs (Best Management Practices). It was found that the target area has urgent T-P management methods especially at moist and midrange hydrologic conditions because of point source pollutants occurred in developed areas. One example measure for this could be establishment of advanced treatment facility. This study proved that the use of LDC was a useful way to achieve TWQ (Target Water Quality) on the target watershed considered. It was also expected that the methodology applied in this study could have a wider application on the establishment of watershed water management measures.

Development of Gas Chromatography/Mass Spectrometry for the Determination of Essential Fatty Acids in Food Supplemental Oil Products

  • Ahn, Seonghee;Yim, Yoon-Hyung;Kim, Byungjoo
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.75-78
    • /
    • 2013
  • A gas chromatography/mass spectrometric (GC/MS) method was developed as a candidate reference method for the accurate determination of essential fatty acids (linoleic acid, ${\alpha}$- and ${\gamma}$-linolenic acids) in food supplemental oil products. Samples were spiked with three internal standards (stearic acid-$d_{35}$, $^{13}C_{18}$-linoleic acid, and $^{13}C_{18}$-${\alpha}$-linolenic acid). Samples were then subject to saponification, derivatization for methylation, and extraction by organic solvent. For GC/MS measurement, an Agilent HP-88 column, designed for the separation of fatty acid methyl esters, was selected after comparing with other columns as it provided better separation for target analytes. Target analytes and internal standards were detected by selected ion monitoring of molecular ions of their methyl ester forms. The GC/MS method was applied for the measurement of three botanical oils in NIST SRM 3274 (borage oil, evening primrose oil, and flax oil), and measurement results agreed with the certified values. Measurement results for target analytes which have corresponding isotope-labeled analogues as internal standard were calculated based on isotope dilution mass spectrometry (IDMS) approach, and compared with results calculated by using the other two internal standards. Results from the IDMS approach and the typical internal standard approach were in good agreement within their measurement uncertainties. It proves that the developed GC/MS method can provide similar metrological quality with IDMS methods for the measurement of fatty acids in natural oil samples if a proper fatty acid is used as an internal standard.

Identifying Priority Area for Nonpoint Source Pollution Management and Setting up Load Reduction Goals using the Load Duration Curve (부하지속곡선을 이용한 비점오염원 우선관리 지역 선정 및 관리목표 설정 연구)

  • Jang, Sun Sook;Ji, Hyun Seo;Kim, Hak Kwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.17-27
    • /
    • 2018
  • The objective of this study is to identify the priority area where the nonpoint source pollution (NPS) management is required and to set up the load reduction goals for the identified priority area. In this study, the load duration curve (LDC) was first developed using the flow and water quality data observed at 286 monitoring stations. Based on the developed LDC, the priority area for the NPS pollution management was determined using a three-step method. The 24 watersheds were finally identified as the priority areas for the NPS pollution management. The water quality parameters of concern in the priority areas were the total phosphorus or chemical oxygen demand. The load reduction goals, which were calculated as the percent reduction from current loading levels needed to meet target water quality, ranged from 67.9% to 97.2% during high flows and from 40.3% to 69.5% during moist conditions, respectively. The results from this study will help to identify critical watersheds for NPS program planning purposes. In addition, the process used in this study can be effectively applied to identify the pollutant of concern as well as the load reduction target.

Photocatalytic Destruction of Chlorinated and Aromatic Hydrocarbons for Low-Level Indoor Air Cleaning (저농도 실내공기 정화를 위한 염소화 및 방향족 탄화수소의 광촉매 분해)

  • Jo, Wan Geun;Gwon, Gi Dong;Choe, Sang Jun;Song, Dong Ik
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.767-777
    • /
    • 2004
  • This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of volatile hydrocarbons(VHC) at low ppb concentrations commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) of VHC, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) for the PCO destruction efficiencies of the selected target VHC. None of the target VHC presented significant dependence on the RH, which are inconsistent with a certain previous study that reported that under conditions of low humidity and a ppm toluene inlet level, there was a drop in the PCO efficiency with decreasing humidity. However, it is noted that the four parameters (HD, RM, FT and IPS) should be considered for better VHC removal efficiencies for the application of $TiO_2$ photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VHC at concentrations associated with non-occupational indoor air quality issues can be up to nearly 100%. The amount of CO generated during PCO were a negligible addition to the indoor CO levels. These abilities can make the PCO reactor an important tool in the effort to improve non-occupational indoor air quality.

Effect of Lime Amount and Application Time on Soil pH Change, Yield, and Quality of Leaf Tobacco (석회시용량과 시용시기가 경작지 토양산도 변화와 잎담배 수량 및 품질에 미치는 영향)

  • 정훈채;김용연;황건중
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.61-70
    • /
    • 2000
  • This study was carried out to improve the tobacco field condition and to determine the effect of lime amount and application time on soil pH, yield, and quality of leaf tobacco. Lime was applied to the tobacco field by determined amounts according to different pH level. The changes of soil pH, growth of tobacco, yield, and quality of KF109 and Br21 tobacco were surveyed by time lapse. The target pH value in tobacco field soil can be reached at 6 weeks after lime application, and then the soil pH was lowered slightly after that time. The lime amount needed to reach target pH was decreased 40 % in the same tobacco field after 1 year. Though the initial growth rate of flue-cured tobacco in the field of pH 7.0 was lower than that of conventional tobacco field, the field of pH 7.0 showed the highest yield after the maximum growth stage. The quality of cured leaf tobacco in the field of pH 7.0 applied lime at spring season was slightly lowered compared with that in conventional. This results indicated that the best pH condition in tobacco field for the best tobacco growth was 6.5 and the proper time of lime application was fall season of previous year by application of the whole quantity.

  • PDF

A Study on Quality Control for Medical Image by Using Deviation Index of Digital Radiology (디지털 방사선 영상의 편차지수를 이용한 의료영상 품질관리에 관한 연구)

  • Jeong, Hoi-Woun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.43 no.2
    • /
    • pp.115-121
    • /
    • 2020
  • In a digital radiation system using a Flat Panel Detector, we attempted to the quality control of digital radiography system using the Exposure Index and Deviation Index. Calibration was performed with the radiation quality suggested by the International Electrotechnical Commission, and through an experiment using a phantom, appropriate inspection radiation conditions applicable to medical institutions were selected. The study was conducted using the selected radiation conditions. Through those chest posterior anterior image, information such as examination conditions and exposure index was obtained. The deviation index was derived by analyzing the exposure index based on the target exposure index calculated by the phantom study. As for the analyzed exposure index, 97.1% was distributed within the range of ± 2.0 based on the deviation index. Quality control of medical images should be performed through management of inspection conditions through exposure index and deviation index and management of medical images.

Breathing Zone Air Quality in Taegu (인체 호흡 영역에서의 대구시 대기질에 관한 연구)

  • 조완근;손상호
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.7-14
    • /
    • 1996
  • Two experiments were conducted to evaluate breathing zone air quality in Taegu, using automatic analyzers for four air quality standards($SO_2$, $NO_2$, CO, and $O_3$). First, air target compounds were measured for 8 to 12 hours in each of two commercial areas and five residential areas. Second, air target compounds were hourly measured for 24 hours in each of two commercial areas, two residential areas, and an industrial complex area. Based on the first experiment the breathing zone air was more polluted in the commercial area as compared to the residential area, while the second experiment showed that the breathing zone air was polluted rather in the residential are3 as compared to the commercial area. The second experiment also indicated that there was some variation of breathing zone air concentration with time and measuring sites. Diurnal variation of breathing zone air concentrations was consistent with previous studies which measured at building height. The highest breathing zone air concentration was shown in Seongseo industrial complex area. An unusual finding of this study was that $SO_2$ concentration in the breathing zone air of Bisandong, a typical residential area of Taegu, was higher than that of other residential areas, even higher than that of Seongseo industrial complex area.

  • PDF

Development of Expected Loss Capability Index Using Reflected Normal Loss Function (역정규 손실함수를 이용한 기대손실 능력지수의 개발)

  • Chun, Dong-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.41-49
    • /
    • 2017
  • Process quality control, which prevents problems and risks that may occur in products and processes, has been recognized as an important issue, and SPC techniques have been used for this purpose. Process Capability Index (PCI) is useful Statistical Process Control (SPC) tool that is measure of process diagnostic and assessment tools widely use in industrial field. It has advantage of easy to calculate and easy to use in the field. $C_p$ and $C_{pk}$ are traditional PCIs. These traditional $C_p$ and $C_{pk}$ were used only as a measure of process capability, taking into account the quality variance or the bias of the process mean. These are not given information about the characteristic value does not match the target value of the process and this has the disadvantage that it is difficult to assess the economic losses that may arise in the enterprise. Studies of this process capability index by many scholars actively for supplement of its disadvantage. These studies to evaluate the capability of situation of various field has presented a new process capability index. $C_{pm}$ is considers both the process variation and the process deviation from target value. And $C_{pm}{^+}$ is considers economic loss for the process deviation from target value. In this paper we developed an improved Expected Loss Capability Index using Reflected Normal Loss Function of Spring. This has the advantage that it is easy to realistically reflect the loss when the specification is asymmetric around the target value. And check the correlation between existing traditional process capability index ($C_{pk}$) and new one. Finally, we propose the criteria for classification about developed process capability index.

Improved Recognition of Far Objects by using DPM method in Curving-Effective Integral Imaging (커브형 집적영상에서 부분적으로 가려진 먼 거리 물체 인식 향상을 위한 DPM 방법)

  • Chung, Han-Gu;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.128-134
    • /
    • 2012
  • In this paper, we propose a novel approach to enhance the recognition performance of a far and partially occluded three-dimensional (3-D) target in computational curving-effective integral imaging (CEII) by using the direct pixel-mapping (DPM) method. With this scheme, the elemental image array (EIA) originally picked up from a far and partially occluded 3-D target can be converted into a new EIA just like the one virtually picked up from a target located close to the lenslet array. Due to this characteristic of DPM, resolution and quality of the reconstructed target image can be highly enhanced, which results in a significant improvement of recognition performance of a far 3-D object. Experimental results reveal that image quality of the reconstructed target image and object recognition performance of the proposed system have been improved by 1.75 dB and 4.56% on the average in PSNR (peak-to-peak signal-to-noise ratio) and NCC (normalized correlation coefficient), respectively, compared to the conventional system.