• Title/Summary/Keyword: target location system

Search Result 344, Processing Time 0.019 seconds

A Tracking System Using Location Prediction and Dynamic Threshold for Minimizing SMS Delivery

  • Lai, Yuan-Cheng;Lin, Jian-Wei;Yeh, Yi-Hsuan;Lai, Ching-Neng;Weng, Hui-Chuan
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • In this paper, a novel method called location-based delivery (LBD), which combines the short message service (SMS) and global position system (GPS), is proposed, and further, a realistic system for tracking a target's movement is developed. LBD reduces the number of short message transmissions while maintaining the location tracking accuracy within the acceptable range. The proposed approach, LBD, consists of three primary features: Short message format, location prediction, and dynamic threshold. The defined short message format is proprietary. Location prediction is performed by using the current location, moving speed, and bearing of the target to predict its next location. When the distance between the predicted location and the actual location exceeds a certain threshold, the target transmits a short message to the tracker to update its current location. The threshold is dynamically adjusted to maintain the location tracking accuracy and the number of short messages on the basis of the moving speed of the target. The experimental results show that LBD, indeed, outperforms other methods because it satisfactorily maintains the location tracking accuracy with relatively fewer messages.

Analysis of Optimum Integration on the GNSS and the Vision System (GNSS와 Vision System의 최적 융합 분석)

  • Park, Chi-Ho;Kim, Nam-Hyeok;Park, Kyoung-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.13-18
    • /
    • 2015
  • This paper proposes an optimum vision system analysis and a reliable high-precision positioning system that converges a GNSS and a vision system in order to resolve position error and outdoor shaded areas two disadvantages of GNSS. For location determination of the object, it should receive signal from at least four GNSS. However, in urban areas, exact location determination is difficult due to factors like high buildings, obstacles, and reflected waves. In order to deal with the above problem, a vision system was employed. First, determine an exact position value of a target object in urban areas whose environment is poor for a GNSS. Then, identify such target object by a vision system and its position error is corrected using such target object. A vehicle can identify such target object using a vision system while moving, make location data values, and revise location calculations, thereby resulting in reliable high precision location determination.

Estimation of Person Height and 3D Location using Stereo Tracking System (스테레오 추적 시스템을 이용한 보행자 높이 및 3차원 위치 추정 기법)

  • Ko, Jung Hwan;Ahn, Sung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • In this paper, an estimation of person height and 3D location of a moving person by using the pan/tilt-embedded stereo tracking system is suggested and implemented. In the proposed system, face coordinates of a target person is detected from the sequential input stereo image pairs by using the YCbCr color model and phase-type correlation methods and then, using this data as well as the geometric information of the stereo tracking system, distance to the target from the stereo camera and 3-dimensional location information of a target person are extracted. Basing on these extracted data the pan/tilt system embedded in the stereo camera is controlled to adaptively track a moving person and as a result, moving trajectory of a target person can be obtained. From some experiments using 780 frames of the sequential stereo image pairs, it is analyzed that standard deviation of the position displacement of the target in the horizontal and vertical directions after tracking is kept to be very low value of 1.5, 0.42 for 780 frames on average, and error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 0.5% on average. These good experimental results suggest a possibility of implementation of a new stereo target tracking system having a high degree of accuracy and a very fast response time with this proposed algorithm.

Small Target Detecting and Tracking Using Mean Shifter Guided Kalman Filter

  • Ye, Soo-Young;Joo, Jae-Heum;Nam, Ki-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.187-192
    • /
    • 2013
  • Because of the importance of small target detection in infrared images, many studies have been carried out in this area. Using a Kalman filter and mean shift algorithm, this study proposes an algorithm to track multiple small moving targets even in cases of target disappearance and appearance in serial infrared images in an environment with many noises. Difference images, which highlight the background images estimated with a background estimation filter from the original images, have a relatively very bright value, which becomes a candidate target area. Multiple target tracking consists of a Kalman filter section (target position prediction) and candidate target classification section (target selection). The system removes error detection from the detection results of candidate targets in still images and associates targets in serial images. The final target detection locations were revised with the mean shift algorithm to have comparatively low tracking location errors and allow for continuous tracking with standard model updating. In the experiment with actual marine infrared serial images, the proposed system was compared with the Kalman filter method and mean shift algorithm. As a result, the proposed system recorded the lowest tracking location errors and ensured stable tracking with no tracking location diffusion.

Three Dimensional Indoor Location Tracking Viewer

  • Yang, Chi-Shian;Jung, Sang-Joong;Chung, Wan-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.108-118
    • /
    • 2009
  • In this paper we develop an indoor location tracking system and its 3D tracking monitoring viewer, viz., 3D Navigation Viewer (3DNV). We focus on the integration of an indoor location tracking system with the Virtual Reality Modeling Language (VRML), to facilitate a representation of the user's spatial information in virtual indoor environments that is synchronized with the physical location environment. The developed indoor location tracking system employs beacons as active transmitters, and a listener as a passive receiver. The distance information calculated from the difference speeds of RF and Ultrasonic signals is exploited, to determine the user's physical location. This is essential in supporting third parties like doctors and caregivers in identifying the activities and status of a particular individual via 3DNV. 3DNV serves as a unified user interface for an indoor location tracking system, showing the viewpoint and position of the target in virtual indoor environments. It was implemented using VRML, to provide an actual real time visualization of the target's spatial information.

A Design and Implementation of Security Image Information Search Service System using Location Information Based RSSI of ZigBee (ZigBee의 RSSI 위치정보기반 보안 영상정보 검색 시스템 설계 및 구현)

  • Kim, Myung-Hwan;Chung, Yeong-Jee
    • Journal of Information Technology Services
    • /
    • v.10 no.4
    • /
    • pp.243-258
    • /
    • 2011
  • With increasing interest in ubiquitous computing technology, an infrastructure for the short-distance wireless communication has been extended socially, bringing spotlight to the security system using the image or location. In case of existing security system, there have been issues such as the occurrences of blind spots, difficulty in recognizing multiple objects and storing of the unspecified objects. In order to solve this issue, zone-based location-estimation search system for the image have been suggested as an alternative based on the real-time location determination technology combined with image. This paper intends to suggest the search service for the image zone-based location-estimation. For this, it proposed the location determination algorism using IEEE 802.15.4/ZigBee's RSSI and for real-time image service, the RTP/RTCP protocol was applied. In order to combine the location and image, at the event of the entry of the specified target, the record of the time for image and the time of occurrence of the event on a global time standard, it has devised a time stamp, applying XML based meta data formation method based on the media's feature data based in connection with the location based data for the events of the object. Using the proposed meta data, the service mode which can search for the image from the point in time when the entry of the specified target was proposed.

An Effective TOA-based Localization Method with Adaptive Bias Computation

  • Go, Seung-Ryeol
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we propose an effective time-of-arrival (TOA)-based localization method with adaptive bias computation in indoor environments. The goal of the localization is to estimate an accurate target's location in wireless localization system. However, in indoor environments, non-line-of-sight (NLOS) errors block the signal propagation between target device and base station. The NLOS errors have significant effects on ranging between two devices for wireless localization. In TOA-based localization, finding the target's location inside the overlapped area in the TOA-circles is difficult. We present an effective localization method using compensated distance with adaptive bias computation. The proposed method is possible for the target's location to estimate an accurate location in the overlapped area using the measured distances with subtracted adaptive bias. Through localization experiments in indoor environments, estimation error is reduced comparing to the conventional localization methods.

Effective ToA-Based Indoor Localization Method Considering Accuracy in Wireless Sensor Networks (무선 센서 네트워크 상에서 정확도를 고려한 효과적인 도래시간 기반 무선실내측위방법)

  • Go, Seungryeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.640-651
    • /
    • 2016
  • We propose an effective ToA-based localization method considering accuracy in indoor environments. The purpose of the localization system is to estimate the coordinates of the geographic location of target device. In indoor environments, accurately estimating the location of a target device is not easy due to various errors. The accuracy of wireless localization is influenced by NLOS errors. ToA-based localization measures the location of a target device using the distances between a mobile device and three or more base stations. However, each of the NLOS errors along a distance estimated from a target device to a base station is different because of dissimilar obstacles. To accurately estimate the target's location, an optimized localization process is needed in indoor environments. In this paper, effective ToA-based localization method process is proposed for improving accuracy in wireless sensor networks. Performance evaluations are presented, and the experimental localization system results are proved through comparisons of various localization methods with the proposed methods.

Joint Localization and Velocity Estimation for Pulse Radar in the Near-field Environments

  • Nakyung Lee;Hyunwoo Park;Daesung Park;Bukeun Byeon;Sunwoo Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.315-321
    • /
    • 2023
  • In this paper, we propose an algorithm that jointly estimates the location and velocity of a near-field moving target in a pulse radar system. The proposed algorithm estimates the location and velocity corresponding to the outcome of orthogonal matching pursuit (OMP) in a 4-dimensional (4D) location-velocity space. To address the high computational complexity of 4D parameter joint estimation, we propose an algorithm that iteratively estimates the target's 2D location and velocity sequentially. Through simulations, we analyze the estimation performance and verify the computational efficiency of the proposed algorithm.