DOI QR코드

DOI QR Code

Analysis of Optimum Integration on the GNSS and the Vision System

GNSS와 Vision System의 최적 융합 분석

  • Received : 2014.11.18
  • Accepted : 2015.02.26
  • Published : 2015.03.25

Abstract

This paper proposes an optimum vision system analysis and a reliable high-precision positioning system that converges a GNSS and a vision system in order to resolve position error and outdoor shaded areas two disadvantages of GNSS. For location determination of the object, it should receive signal from at least four GNSS. However, in urban areas, exact location determination is difficult due to factors like high buildings, obstacles, and reflected waves. In order to deal with the above problem, a vision system was employed. First, determine an exact position value of a target object in urban areas whose environment is poor for a GNSS. Then, identify such target object by a vision system and its position error is corrected using such target object. A vehicle can identify such target object using a vision system while moving, make location data values, and revise location calculations, thereby resulting in reliable high precision location determination.

본 논문은 GNSS의 문제점인 위치오차와 실외음영지역을 해소하기 위하여 GNSS와 vision system을 융합한 신뢰성있는 고정밀 측위와 최적의 vision system을 분석하였다. 위치결정을 위해서는 최소 4개 이상의 GNSS로부터 신호를 수신 받아야 한다. 그러나 도심지역에서는 고층건물이나 장애물 또는 반사파에 의해 정확한 위치가 어렵다. 이러한 문제점을 해결하기 위하여 vision system을 이용한다. GNSS를 사용하기 열악한 도심지역의 target object에 정확한 위치 값을 결정해 놓는다. 그리고 vision system을 이용해 target object를 인식하고, 인식된 target object를 이용하여 위치오차를 보정해 준다. 이동체는 이동 중 vision system을 이용하여 target object를 인식하여 위치 데이터 값을 만들어내고, 위치 계산을 수정하여 안정되고 신뢰성 있는 고정밀 측위를 할 수 있다.

Keywords

References

  1. Tsui, J.B. Fundamentals of Global System Receivers, A Software Approach, John Wiley & Sons, 2 , 10-27, (2000).
  2. Ramjee, P. and Marina, R. Applied Satellite Navigation Using GPS, Galileo, and Augmentation System, Artech House.
  3. Hofmann, W.B., Lichtenegger, H. and Collins, J. GPS Fifth, revised edition (2001).
  4. Redmill, K. and Kitjima, T. DGPS/INS Integrated Positioning for Control of Automated Vehicle. IEEE Intelligent Transportation Systems Conference Proceeding, 25-29, (2001).
  5. Lim, Y.C., Lee, M.H., Lee, C.H., Kwon, S. and Lee, J.H. Improvement of Stereo Vision-based Position and Velocity Estimation and Tracking using a Strip-based Disparity Estimation and Inverse Perspective Map-based Extended Kalman Filter. Optics and Lasers in Engineering, 48, 9, 859-868, (2010). https://doi.org/10.1016/j.optlaseng.2010.04.001
  6. Bertozzi, M., Broggi, A., Cellario, M., Fascoli, A., Lombardi, P. and Porta, M. Artificial Vision in Road Vehicles, Proceeding of the IEEE, 90, 7, 1258-1271, (2002). https://doi.org/10.1109/JPROC.2002.801444
  7. Cohen, C. and Koss, F.V. A Comprehensive Study of Three Object Triangulation. Mobile Robots VII , Vol. 1831, 95-106, (1992).
  8. Betke, M. and Leonid, G. Mobile Robot Localization Using Land Marks. IEEE trans on Robotics and Automation, Vol. 13, 251-263, (1997). https://doi.org/10.1109/70.563647
  9. Park, C.H. and Kim, N.H A Study of External(Outdoor) Shadow Area Solution Based on Global Navigation Satellite System and Vision System Convergence Technology, 19thITS Word Congress (2012).
  10. Park, C.H. and Kim N.H A Study of Positioning Error based on the Satellite Navigation System, The Institute Of electronics And Information Engineers Vol. 49, No. 10, 23-33, (2012) https://doi.org/10.5573/ieek.2012.49.10.023
  11. Park, C.H. and Kim, N.H Precise and Reliable Positioning Based on the Integration of Navigation Satellite System and Vision System, International Journal of Automotive Technology, Vol. 15, 79-87, (2014). https://doi.org/10.1007/s12239-014-0009-7