For a conventional natural-circulation type solar water heater, the pressure head is limited by the height between the storage tank and hot water tap. Therefore, it is difficult to provide sufficient hot water flow rate for general usage. This study deals with a design modification of the storage tank to utilize the tap-water pressure to increase hot-water supply Based on fluid dynamic and heat transfer theories, a series of modeling and simulation is conducted to achieve practical design requirements. An experimental setup is built and tested and the results are compared with theoretical simulation model. The storage tank capacity is 240 l and the outer diameter of piping was 15 mm. Number of tube turns tested are 5, 10, and 15. Starting with initial storage tank temperature of $80^{\circ}C$, the temperature variation of the supply hot water is investigated against time, while maintaining minimum flow rate of 10 1/min. Typical results show that the hot water supply of minimum $30^{\circ}C$ can be maintained for 34 min with tap-water supply pressure of 2.5 atm, The relative errors between modeling and experiments coincide well within 10% in most cases.
The purpose of this work is to investigate the water quality change characteristics of treated water in water distribution systems of Water Treatment Plants (WTPs) of Jeju City. For this, the raw water, treated water and tap water that did not pass (named as not pass-tap water) and passed through the water storage tank (named as pass-tap water) were sampled and analyzed monthly from September 2001 to August 2002, for four (W, S, B and O) WTPs except for D WTP (where treated water is not supplied continuously) among WTPs of Jeju City. The concentrations of $NO_3^-$ and $Cl^-$ of treated water in distribution systems changed little, but changed seasonally, which is considered to be based on the seasonal variation of the quality of raw water. The pH of treated water changed little in distribution systems for S WTP, but for the other WTPs, the pH of not pass-tap water was similar to that of treated water and the pH of pass-tap water was higher than that of treated water. The turbidity of treated water in distribution systems changed little except for W2 of W WTP and S4 and S5 of S WTP, where it was higher than that of each treated water. The residual chlorine concentrations between treated water and not pass-tap water changed little, but those between treated water and pass-tap water changed greatly, based on the its long residence time in water storage tank and so its reaction with organic matter, etc or its evaporation. The concentrations of TTHMs (total trihalomethanes) and $CHCl_3$ that induce cancers in water distribution systems of these WTPs, were much lower than their water quality criteria and those in other cities. The concentrations of TTHMs of treated water and not pass-tap water were similar, but concentrations of pass-tap water were 1.5 to 2.0 times higher than those of treated water and not pass-tap water, due to the reaction of residual chlorine and organic matter, etc, with the result of long residence time in water storage tank.
To ensure hygienic safety of drinking water in a water storage tank, the concentrations of residual chlorine should be above a certain regulation level. In this study, we conducted model simulations to investigate the effects of temperature on residual chlorine in water storage tank conditions typically used in Seoul. For this, values of model parameters (decomposition rate constant, sorption coefficient, and evaporation mass transfer coefficient) were experimentally determined from laboratory experiments. The model simulations under continuous flow conditions showed that the residual chlorine concentrations were satisfied the water quality standard level (0.1 mg/L) at all the temperature conditions ($5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$). Meanwhile, when the tanks had a no flow condition (i.e., no tap-water influent due to a sudden shut-down), the concentrations became lower than the regulatory level after certain periods. The findings from this modeling works simulating Seoul's water storage tanks suggested disappearance rate of residual chlorine could be reduced through the tanks design optimization with maintenance of low water temperature, minimization of air flow and volume, suppression of dispersion and the use of wall materials with low sorption ability.
안전한 수돗물 공급을 위해 정수처리장부터 최종 단계인 수도꼭지까지 일정 수준 이상의 잔류염소농도가 유지되어야 한다. 하지만 국내 문헌에 따르면 상수공급의 전체 과정 중에 30-60%의 잔류염소가 소실되고, 이에 대한 주요 원인으로 정수처리 과정에서 염소 사용량 감소 추세, 급수배관 내에서 염소분해 손실, 여름철의 높은 온도에 의한 잔류염소 분해 속도 증가, 급수배관의 노후화에 따른 잔류염소 손실, 저수조 내 저장 시 잔류염소 감소 발생 등이 파악되었다. 이러한 이유로 저수조를 거치는 급수 방식의 경우 최종 수도꼭지의 잔류염소 농도가 기준치보다 낮아질 개연성이 높고, 용량과 체류시간을 단순히 고려하는 기존의 저수조 설계 방식으로 인해서 수돗물 공급의 안전성에 대한 우려가 존재한다. 이의 개선 방안 도출을 위해서 본 연구에서는 저수조 내 잔류염소 감소에 관여하는 주요 기작들인 수체 내 잔류염소 분해, 벽체 표면 흡착, 그리고 증발에 의한 물질전달을 수학적으로 묘사하는 공식들과 계수 값들을 문헌을 통해서 획득하고, 일반적 저수조 조건에서 모델 시뮬레이션을 수행하였다. 그 결과 저수조에 유입되는 수돗물 내 유기물 농도, 수돗물이 저수조에 유입되는 수리학적조건(난류 정도), 그리고 저수조 벽체 표면 재질의 흡착능 등이 저수조 내 잔류염소 감소에 주요 영향 인자들임을 알 수 있었다. 본 연구에서 획득된 결과들은 잔류염소 감소를 최소화하여 안전한 수돗물 공급을 가능하게 하는 새로운 저수조 설계기법이나 기술 개발에 유용하게 활용될 것이다.
Lee, Da-In;Park, Sung Hee;Baek, Jong Hwan;Yoon, Jee Won;Jin, Soo Im;Han, Kwang Eon;Yu, Hak Sun
Parasites, Hosts and Diseases
/
제58권2호
/
pp.191-194
/
2020
Free-living amoebas (FLAs) can cause severe disease in humans and animals when they become infected. However, there are no accurate survey reports on the prevalence of FLAs in Korea. In this study, we collected 163 tap water samples from buildings, apartments, and restrooms of highway service areas in 7 Korean provinces with high population density. All these buildings and facilities have water storage tanks in common. The survey was separated into categories of buildings, apartments, and highway service areas. Five hundred milliliters of tap water from each building was collected and filtered with 0.2 ㎛ pore filter paper. The filters were incubated in agar plates with heated E. coli at 25℃. After axenization, genomic DNA was collected from each FLA, and species classification was performed using partial 18S-rDNA PCR-sequencing analysis. We found that 12.9% of tap water from buildings with storage tanks in Korea was contaminated with FLAs. The highway service areas had the highest contamination rate at 33.3%. All of the FLAs, except one, were genetically similar to Vermamoeba vermiformis (Hartmannella vermiformis). The remaining FLA (KFA21) was very similar to Acanthamoeba lugdunensis (KA/E26). Although cases of human infection by V. vermiformis are very rare, we must pay attention to the fact that one-third of tap water supplies in highway service areas have been contaminated.
To investigate the natural reduction characteristics of radon with a short half-life (3.82 day) in drinking Qgroundwater, we analyzed the changes of radon concentrations of groundwater, waters in storage tanks, and tap waters from the small-scale groundwater-supply systems (N = 301) by LSC (Liquid Scintillation Counter). We also analyzed the concentrations of uranium (half-life 4.5 billion years) in the waters by ICP/MS to compare with natural reduction of radon concentration. The radon concentrations of 68 groundwater-supply systems occupying 22.6% of the total samples exceeded the US EPA's Alternative Maximum Contaminant Level (AMCL : 4,000 pCi/L), with the average radon concentration of 7,316 pCi/L (groundwaters), 3,833 pCi/L (tank waters) and 3,407 pCi/L (tap waters). Compared to the radon levels of pumped groundwaters, those of tank and tap waters naturally reduced significantly down to about 50%. Especially, in case of 29 groundwater-supply systems with the groundwater radon concentrations of 4,000~6,000 pCi/L, average radon concentrations of the tank and tap waters naturally decreased down to the AMCL. Therefore this study implies that radon concentrations of drinking groundwater can be effectively reduced by sufficient storage and residence in tanks.
지하수를 원수로 이용하는 소규모수도시설의 라돈 저감은 주로 저수조에서의 정치와 폭기에 의해 일어난다. 여름철 정치에 의한 32개 소규모수도시설 저수조와 꼭지수의 라돈 저감율은 -69.3~62.7%(평균 25.7%)와 -64.3%~83.1%(평균 30.3%), 가을철 정치에 의한 16개 소규모수도시설 저수조와 꼭지수의 라돈 저감율은 21.3%~78.0%(평균 42.8%)와 17.7%~66.9%(평균 44.8%)로 나타났다. 여름철보다 가을철의 라돈 저감률이 더 높은 것은 가을철의 지하수 사용량이 더 적어서 정치효과가 더 컸기 때문으로 판단된다. 폭기시설이 설치된 12개 저수조의 라돈 저감률은 47.4~94.0%(평균 78.9%)로 나타났는데 이 저감률에는 정치에 의한 라돈 저감률이 합쳐져 있다. 소규모수도시설 지하수의 라돈 저감을 위해서는 정치와 폭기를 이용할 수 있는데 보다 효율적인 활용을 위하여 지하수의 라돈 함량 변동성, 저수조의 크기와 형태, 지하수 사용량 변화, 폭기량, 환기시설 등을 고려한 라돈 저감 연구가 필요하다.
From May to June 2012, a waterborne outbreak of 124 cases of cryptosporidiosis occurred in the plumbing system of an older high-rise apartment complex in Seoul, Republic of Korea. The residents of this apartment complex had symptoms of watery diarrhea and vomiting. Tap water samples in the apartment complex and its adjacent buildings were collected and tested for 57 parameters under the Korean Drinking Water Standards and for additional 11 microbiological parameters. The microbiological parameters included total colony counts, Clostridium perfringens, Enterococcus, fecal streptococcus, Salmonella, Shigella, Pseudomonas aeruginosa, Cryptosporidium oocysts, Giardia cysts, total culturable virus, and Norovirus. While the tap water samples of the adjacent buildings complied with the Korean Drinking Water Standards for all parameters, fecal bacteria and Cryptosporidium oocysts were detected in the tap water samples of the outbreak apartment complex. It turned out that the agent of the disease was Cryptosporidium parvum. The drinking water was polluted with sewage from a septic tank in the apartment complex. To remove C. parvum oocysts, we conducted physical processes of cleaning the water storage tanks, flushing the indoor pipes, and replacing old pipes with new ones. Finally we restored the clean drinking water to the apartment complex after identification of no oocysts.
The drinking water supply system applicable to the laying hen consists of air-water heat pumps, drinking water tanks, heat stroage tank, circulation pumps, PE pipes, nipples, and control panels. When the heat pump system has power of 7.7 to 8.7 kW per hour, the performance coefficient is between 3.1 and 3.5. The supply temperature from the heat pump to the heat stroage tank was stabilized at about $12{\pm}1^{\circ}C$, but the return temperature showed a variation of from 8 to $14^{\circ}C$. Stratified temperature in the storage tank appeared at $12.^{\circ}C$, $13.5^{\circ}C$ and $14.4^{\circ}C$, respectively. The drinking water supply temperature remained set at $15^{\circ}C$ and $25^{\circ}C$, and the conventional tap water showed a variation for $23^{\circ}C$ to $30^{\circ}C$. As chickens grow older, the amount of food intake and drinking water increased. $y=-0.0563x^2+4.7383x+8.743$, $R^2=0.98$ and the feed intake showed $y=-0.1013x^2+8.5611x$. In the future, further studies will need to figure out the cooling effect on heat stress of livestock.
Vietnam is a developing country with the rate around 5%-6% per year, especially in urban areas. Rapidly developed urban areas lead to stress for infrastructure and the water supply is also stressed. In Hanoi city, total water capacity from the manufactories is around one million cubic meters per day and almost the entire main water source is groundwater but it is not enough to supply all of Hanoi's people, especially in the summer. A demo project is implemented in Hanoi University of Civil Engineering (HUCE) to produce drinking water by using the rainwater and membrane system and supply for people. In this project, rainwater is collected on the rooftop of the lecture building with an area of around $500m^2$ and $100m^3$ volumetric rainwater tanks. Afterwards, the rainwater is treated by the micro-membrane system and supplied to the tap water. Total cost for construction, technology and operation in the first year is around USD 48,558. In the long-term (15 yr) if HUCE invests in the same system, with $20m^3$ volumetric storage tank, it can provide drinking water for 500 staffs in every year. The cost of investment and operation for this system is lower than 30% compared to buying bottled water with the price USD 1.8/bottle. The drinking water parameters after treatment are pH, 7.3-7.75; turbidity, 0.6-0.8 NUT; total dissolved solids, 60-89 mg/L; coliform, 0; heavy metal similar with water quality in the bottle water in Vietnam.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.