• 제목/요약/키워드: tantalum powder

검색결과 42건 처리시간 0.023초

탈수소화 분위기가 탄탈륨 분말 수소농도에 미치는 영향 연구 (Effect of dehydride atmosphere on Hydrogen concentration of Tantalum)

  • 이지은;윤진호;이찬기
    • 산업기술연구
    • /
    • 제41권1호
    • /
    • pp.25-30
    • /
    • 2021
  • Hydride-dehydride process for efficient recycling of tantalum (Ta) is used for manufacturer of Ta powder. In case of metal powder, Impurities as like nitride, oxygen, hydrogen is decreased of physical properties. For manufacture of Ta powder, control of theses impurities is important. In this study, to decreased of impurities on Ta powder using HDH process optimize dehydride condition. Dehydration behavior of Ta is depended on temperature, time, and atmosphere. Phase transition of Ta hydride is analyzed by X-ray diffraction (XRD). Concentration of hydrogen is decreased with temperature increased. At high temperature, concentration of hydrogen in Ta is similar according to time increased. Size and morphology of powder is not observed after dehydride. Ta powder, which is less than 20 um, concentration of hydrogen under 800 ppm is obtain.

MR-EMR 복합공정에 의한 탄탈륨분말의 제조시 온도변화에 따른 분말의 특성 (Characteristics of Powder with Change of Temperature in Production of Tantalum Powder by MR-EMR Combination Process)

  • 배인성;윤재식;박형호;윤동주;이민호;설경원;김병일
    • 한국분말재료학회지
    • /
    • 제10권6호
    • /
    • pp.395-405
    • /
    • 2003
  • In the conventional metallothermic reduction (MR) process for obtaining tantalum powder in batch-type operation. it is difficult to control morphology and location of deposits. On the other hand, a electronically mediated reaction (EMR) process is capable to overcome these difficulties and has a merit of continuous process, but it has the defect that the reduction yield is poor. MR-EMR combination process is a method that is able to overcome demerits of MR and EMR process. In this study, a MR-EMR combination process has been applied to the production of tantalum powder by sodium reduction of $K_2$TaF$_{7}$. The total charge passed through external circuit and average particle size (FSSS) were increased with increasing reduction temperature. The proportion of fine particle (-325 mesh) was decreased with increasing reduction temperature. The yield was improved from 65% to 74% with increasing reduction temperature. Considering the charge, impurities, morphology, particle size and yield, an reduction temperature of 1,123 K was found to be optimum temperature for MR-EMR combination process.

온도에 따른 탄탈 분말 제조와 특성 (Production of Tantalum Powder and Characteristics by Temperature)

  • 윤재식;박형호;배인성;이상백;김병일
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1052-1056
    • /
    • 2001
  • Pure tantalum powder has been produced by sodium as a reluctant, $K_2TaF_7$as a feed material and KCl/KF as a diluent in an inconel stainless steel bomb by the metallothermic reduction. The influence of experimental variable, such as temperature of reduction on the yield and characteristics of the Ta powder has been studied. As the temperature of the reduction was varied from$ 800{\circ}C~980{\circ}C$, the yield of tantalum powder increased from 41% to 56%. However no appreciable improvement was observed above$920{\circ}C$. The fraction of fine Ta Powder decreased appreciably with the increase of temperature, and particle size was$2~3{\mu}m$at reduction temperature of$920{\circ}C$.Therefore a reduction temperature of$920{\circ}C$was optimally fixed for subsequent runs.

  • PDF

MR-EMR 복합제조공정에서 환원제 위치가 탄탈륨 분말 특성에 미치는 영향 (Characteristics of Tantalum Powder on the Location of Reductant by MR and EMR Combination Process)

  • 박형호;윤재식;배인성;김양수;윤동주;원대희;김병일
    • 한국분말재료학회지
    • /
    • 제14권3호
    • /
    • pp.190-196
    • /
    • 2007
  • A process known as the MR and EMR combination process is able to overcome the shortcomings of the MR (metallothermic reduction) and EMR (electronically mediated reaction) process. The effects of $K_2TaF_7$ as the raw material, sodium as the reducing agent and KCl/KF as the diluent on the characteristics of tantalum powder are investigated. In this study, a MR-EMR combination process has been employed to tantalum powder on the location of reductant. The excess of reductant were varied from 25, 50 to 75 wt%. The total charge and external circuit decreases as the amount of reductant increases. The average particle size increases with increasing the amount of reductant.

MR-EMR 복합공정에 의한 탄탈륨분말의 제조시 과잉첨가 환원제 양에 따른 분말의 특성 (Characteristics of Powder with Amount of Reductant Excess in Production of Tantalum Powder by MR-EMR Combination Process)

  • 배인성;윤재식;박형호;김병일;이현우;김낙찬;설경원
    • 한국분말재료학회지
    • /
    • 제11권4호
    • /
    • pp.333-340
    • /
    • 2004
  • In this study, tantalum powder has been producted by MR-EMR combination process. MR-EMR combination process is a method that is able to improve demerits of MR(metallothermic reduction) and EMR(electronically mediated reaction) process. This study examined the characteristics of powder with the amount of reductant excess using $K_2$TaF$_{7}$ as feed materials, Na as a reductant and KCl/KF as a diluent. In addition, this study examined acid treatment that affect the high purification of powder. The impurities contained in powder was removed in various conditions of acid treatment. The total charge passed through external circuit and average particle size(FSSS) were increased with increasing amount of sodium excess. The proportion of fine particle(-325mesh) was decreased with increasing amount of sodium excess. The yield was improved from 70% to 76% with increasing amount of sodium excess. Considering the impurities, charge, morphology, particle size and yield, an amount of sodium excess of 10wt% were found to be optimum conditions for MR-EMR combination process.s.

수산 탄탈륨 용액을 이용한 초미립 TaC-5%Co 복합 분말의 합성 (Synthesis of Ultrafine TaC-5%Co Composite Powders using Tantalum Oxalate Solution)

  • 권대환;홍성현;김병기
    • 한국분말재료학회지
    • /
    • 제10권4호
    • /
    • pp.255-261
    • /
    • 2003
  • Ultrafine TaC-5%Co composite powders were synthesized by spray conversion process using tantalum oxalate solution and cobalt nitrate hexahydrate(Co($(NO_3)_2$ . 6$H_2O$). The phase of Ta-Co oxide powders had amorphous structures after calcination below 50$0^{\circ}C$ and changed $Ta_2O_5$, $TaO_2$ and $CoTa_2O_6$ phase by heating above $600^{\circ}C$. The calcined Ta-Co oxide powders were spherical agglomerates consisted of ultrafine primary particles <50 nm in size. By carbothermal reaction, the TaC phase began to form from 90$0^{\circ}C$. The complete formation of TaC could be achieved at 105$0^{\circ}C$ for 6 hours. The observed size of TaC-Co composite powders by TEM was smaller than 200 nm.

K2NbF7로부터 Na 열환원 공정에 의한 니오븀 분말의 제조 (Preparation of Niobium Powders by Sodiothermic Reduction of K2NbF7)

  • 윤재식
    • 한국재료학회지
    • /
    • 제19권7호
    • /
    • pp.386-390
    • /
    • 2009
  • Niobium(Nb) and Tantalum(Ta) are rarely found apart in nature and never in the free state. The element niobium amounts to 3% of the crustal abundance. On the whole, the niobium capacitor showed somewhat more unstable characteristics than the commercial tantalum capacitors, but is nonetheless considered applicable as a future substitute for tantalum capacitors. In this study, niobium powder was made from potassium heptafluoroniobite($K_2NbF_7$) by using sodium(Na) as a reductant and KCl and KF as diluents based on the hunter sodiothermic reduction method.,In order to obtain a high surface area niobium powder via the sodiothermic reduction method, a certain amount of diluent, such as alkali metal halides selected from NaCl, KCl, KF and NaF, was added in the raw materials to be reduced. However, if a higher surface area of powder is required, more diluents need to be used in the said method in order to produce niobium powder. But when more diluents are used, the niobium powder will be contaminated with more impurities and the yield will also decreased.

Na환원법에 의한 희석제량에 따른 탄탈 분말 제조와 특성 (Characteristics and Production of Tantalum Powder on the amount of Diluent By Na Reduction Method)

  • 윤재식;박형호;배인성;김병일;정성만
    • 한국재료학회지
    • /
    • 제12권9호
    • /
    • pp.706-711
    • /
    • 2002
  • High-pure tantalum powder was fabricated through Na reduction process and has been produced by using $K_2$TaF$_{7}$, and KCI, KF for raw material and diluent, respectively. A raw material and diluent were charged at the hestalloy bomb by the weight rate of 1:2, 1:1, 1:0.5 and 1:0.25 each other, investigated properties of morphology, chemical composition and yield and particle size after reduced. Ta metal has been achieved by reduction of $K_2$$TaF_{7}$ 500g with 1% sodium in excess of stoichiometric amount in the charge at a reduction temperature of $850^{\circ}C$ for 3hours. According to amount of the diluent, a formation of the powder doesn't have an effect. The diluent prevented the temperature rising caused from the heat of reaction and it maintained the speed of reducing reaction. But in the mixture ratio of raw material and diluent in the 1 : 2 and 1 : 0.25, an oxide and partially not reacted K were detected. As the amount of diluent increased, the size of tantalum powder decreased. According as raw material and the mixture ratio of diluent change from 1:0.25 to 1:2, the size is decreased from 5$\mu\textrm{m}$ to 1$\mu\textrm{m}$, and a particle size distribution which is below 325 mesh in fined powder increases from 71% to 83%. In the case of average size of Tantalum powder which is the mixture ratio (1:0.5), we would get the Ta powder with grain size about 3$\mu\textrm{m}$, which come close to the average size (2~4$\mu\textrm{m}$) of tantalum powder which is used commonly in the present is Ta powder about 3$\mu\textrm{m}$.

Kinetic Spray 공정으로 제조된 탄탈륨 코팅층의 열처리 분위기에 따른 미세조직 및 물성 (Effect of Heat Treatment Environment on the Microstructure and Properties of Kinetic Sprayed Tantalum Coating Layer)

  • 이지혜;김형준;이기안
    • 한국분말재료학회지
    • /
    • 제22권1호
    • /
    • pp.32-38
    • /
    • 2015
  • The effect of heat treatment environment on the microstructure and properties of tantalum coating layer manufactured by kinetic spraying was examined. Heat treatments are conducted for one hour at $800^{\circ}C$, $900^{\circ}C$, and $1000^{\circ}C$ in two different environments of vacuum and Ar gas. Evaluation of microstructure and physical properties are conducted. High density ${\alpha}$-tantalum single phase coating layer with a porosity of 0.04% and hardness of 550 Hv can be obtained. As heat treatment temperature increases, porosity identically decreases regardless of heat treatment environment (vacuum and Ar gas). Hardness of heat treated coating layer especially in Ar gas environment deceases from 550 Hv to 490 Hv with increasing heat treatment temperature. That in vacuum environment deceases from 550 Hv to 530 Hv. The boundary between particles became vague as heat treatment temperature increases. Oxygen distribution of tantalum coating layer is minute after heat treatment in vacuum environment than Ar gas environment.

자전연소합성법에 의한 콘덴서용 탄탈륨 분말 제조 (Preparation of Ta Powder for Capacitor by SHS Process)

  • 이승영;이상일;원창환
    • 대한금속재료학회지
    • /
    • 제47권6호
    • /
    • pp.338-343
    • /
    • 2009
  • The purpose of this study is to make the tantalum powder for solid electrolyte capacitor with SHS (self-propagating high-temperature synthesis) process. Raw materials for manufacturing Ta powder were used $Ta_{2}O_{5}$, Mg and NaCl. While progressing SHS process, $Ta_{2}O_{5}$ powder was reduced by Mg powder. The combustion temperature and velocity were easily controled by the varying mole ratio of NaCl, Mg and initial reaction pressure. In the case of only using NaCl as an inorganic agent, the shape is unagglomerated and has high surface area. whereas we were given the powder which has good net structure by the addition of excessive Mg as a diluent.