• Title/Summary/Keyword: tangent plane

Search Result 77, Processing Time 0.033 seconds

Vibrational Characteristics on the Cables in Cable Stayed Bridge (사장교 케이블의 진동거동 특성)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.249-257
    • /
    • 2017
  • Recently, a cable disconnection accident occurred due to a lightning strike at the Seohae Bridge located in Dangjin-Pyeongtaek City. This is a natural occurrence, but it is a recall that it is very important to review the safety issues due to the disconnection of cable bridges. In other words, the role of cables in cable bridges has a profound effect on the safety of the structure, and it has become necessary to grasp the effect on the entire structural system. The cable bridge is an economic bridge that builds the main tower and supports the bottom plate by cable. The influence of the cable is the main member, which is a big influence on the safety of the whole bridge system. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

A Study on Calculation of Readjustment Height of Urban Region by Geo-spatial Information System - Focused on the Region of YOUNGDO-GU, PUSAN- (지형공간정보체계를 이용한 도시지역의 정지표고 산정에 관한 연구 -부산시 영도구 지역을 중심으로-)

  • 박운용;차성렬;신상철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.119-129
    • /
    • 1994
  • Geo-spatial information system covers a wide range of applications and technologies and is of great potential interest to many users in government, industry and science. In many civil engineering problems it is necessary to model a landform in order to be able to removed or to be brought in to make the site ready for the proposed developed. The earthwork volume, could be calculated by the trapezoidal formula, Simpson's 1/3 and 3/8 rules. And slope is defined by a plane tangent to the surface as modelled by the digital terrain model at any given point and comprises two components namely, gradient, the maximum rate of change altitude, and aspect, the compass direction of this maximum rate of change. The thesis is the earthwork volume could be counted, readjustment height, slope and aspect analysis of various derived products can be obtained form geo-spatial informations.

  • PDF

A Study on the Estimation of Calcaneal Width Using a Correlation of Calcaneal Length and Width (종골 길이와 너비의 상관관계를 이용한 종골 너비 추정에 관한 연구)

  • Chun, Dong-il;Hwang, Shu Chiang;Cho, Jae-ho;Choi, Sung-Woo;Kim, Yong Beom;Won, Sung Hun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.21 no.2
    • /
    • pp.61-65
    • /
    • 2017
  • Purpose: The purpose of this study was to determine the correlation and ratio between the calcaneal length and width for predicting the width of calcaneus. Materials and Methods: A total of 190 feet (190 patients) were included based on computed tomography scans. The length of calcaneus (CL) was measured on the line connecting the center of a circle tangent to the cortical margin in the anterior and posterior parts of the calcaneus in a sagittal plane (W1, W2). The width of the calcaneus was defined as the horizontal line of each part (W1, W2, W3) on the same axial plane. The relationship between the measurement was determined through a correlation analysis. The reliability was assessed based on intraclass correlation coefficients. Results: The CL and widths of calcaneus (W1, W2, W3) had a good positive correlation (r=0.848 [W1/CL], r=0.738 [W2/CL], r=0.769 [W3/CL]; p<0.001). The mean CL and widths ratios were 0.33 (W1/CL), 0.37 (W2/CL), and 0.37 (W3/CL). Using these ratios to estimate the widths by multiplying each ratio by the measured calcaneal length, we found a difference between the estimated calcaneal widths and the actual measured calcaneal widths values was 0.25 mm, 0.43 mm, and 0.16 mm. All measurements showed good-to-excellent inter- and intraobserver reliability. Conclusion: This study analyzed the correlation and ratio between the length and width of the calcaneus. The results will help orthopedic surgeons fixate screws in a stable manner to prevent iatrogenic injuries to the medial neurovascular structures of the calcaneus.

Improving the Accuracy of the Mohr Failure Envelope Approximating the Generalized Hoek-Brown Failure Criterion (일반화된 Hoek-Brown 파괴기준식의 근사 Mohr 파괴포락선 정확도 개선)

  • Youn-Kyou Lee
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.355-373
    • /
    • 2024
  • The Generalized Hoek-Brown (GHB) criterion is a nonlinear failure criterion specialized for rock engineering applications and has recently seen increased usage. However, the GHB criterion expresses the relationship between minimum and maximum principal stresses at failure, and when GSI≠100, it has disadvantage of being difficult to express as an explicit relationship between the normal and shear stresses acting on the failure plane, i.e., as a Mohr failure envelope. This disadvantage makes it challenging to apply the GHB criterion in numerical analysis techniques such as limit equilibrium analysis, upper-bound limit analysis, and the critical plane approach. Consequently, recent studies have attempted to express the GHB Mohr failure envelope as an approximate analytical formula, and there is still a need for continued interest in related research. This study presents improved formulations for the approximate GHB Mohr failure envelope, offering higher accuracy in predicting shear strength compared to existing formulas. The improved formulation process employs a method to enhance the approximation accuracy of the tangential friction angle and utilizes the tangent line equation of the nonlinear GHB failure envelope to improve the accuracy of shear strength approximation. In the latter part of this paper, the advantages and limitations of the proposed approximate GHB failure envelopes in terms of shear strength prediction accuracy and calculation time are discussed.

The dimension analysis of prepared natural teeth for developing customized zirconia block (맞춤형 지르코니아 블락 제작을 위한 삭제된 치아의 평균 크기 분석)

  • Kim, Min-Hyuk;Kim, Sung-Hun;Yeo, In-Sung;Yoon, Hyung-In;Lee, Jae-Hyun;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.4
    • /
    • pp.381-388
    • /
    • 2017
  • Purpose: Unpredictable shrinkage of zirconia during sintering process causes discrepancy. Therefore, there have been attempts to reduce discrepancy by milling zirconia after sintering. However, due to the hardness of sintered zirconia, milling takes longer time, causes damage to the machine and causes chip formation. With customized zirconia block using the mean dimension of prepared natural dentition, it is expected to overcome these shortcomings. Materials and methods: The mean dimension of prepared natural dentition was analyzed as STL file after scanning of prepared teeth treated at SNUDH. The transverse, frontal and sagittal planes were set using Mimics and Photoshop. 3D volume was projected on each plane, and the outer line was measured through external tangent line, and the inner line was measured through inflection point of tangent line. Results: The mean height of prepared incisal (N = 57) is $6.60{\pm}1.05mm$, mesiodistal length is $2.98{\pm}0.73mm$, buccolingual length is $2.04{\pm}0.73mm$. The mean height of prepared premolar (N = 15) is $5.37{\pm}1.49mm$, mesiodistal length is $4.10{\pm}1.78mm$, buccolingual length is $5.86{\pm}1.55mm$. And the mean height of prepared molar (N = 13) is $5.11{\pm}1.29mm$, mesiodistal length is $6.80{\pm}1.18mm$, buccolingual length is $7.34{\pm}1.40mm$. Conclusion: Using the mean dimension of prepared natural dentition, it is expected to be able to fabricate customized zirconia block.

Development of a Semi-Atomatic Protocol for embodiment of a desirable 3D breast shape and deployment of bra cup pattern (3차원의 바람직한 유방형상 구현을 위한 Semi-Atomatic Protocol 개발 및 브래지어 컵 패턴으로의 전개)

  • Sohn, Boo-hyun;Kweon, Soo-ae
    • Journal of Fashion Business
    • /
    • v.20 no.4
    • /
    • pp.189-206
    • /
    • 2016
  • A breast model was for the human body was devised by studying a body scan and human body index of a desirable breast type. Thus, when manufacturing various 3D models, these results can accordingly become a fundamental basis for realizing a desirable breast model. This study aims to provide a basic data for designing the cup patterns of brassieres in order to improve the function and wearing comfort. The comfort of three kinds of brassieres were compared: one manufactured by the actual measured size; another manufactured as per the ratio of desirable upper and lower breast lengths; and the third manufactured by the 3D model attained by the desirable human body ratio. In this study, we suggest a process for realizing the desirable breast model using the ratio of bust breadth and waist front length, which are the components for deciding the appropriate position and size of breast, and which are easy to measure. The ideal breast shape is an equilateral triangle formed by connecting the nipple with the center of the clavicle. After deciding the interval between the nipples, this value can be used to configure the locations of nipples by drawing a tangent, with equal length, from the anterior neck point (which is the center of clavicle) to the nipple. Also, since inside points of breast do not exist, the outer point of breast, upper point of breast, and below point of breast on the same plane, and the depths from the nipple point to the respective points, are applied to simulate a 3D image, by modifications along the x, y, and z axes. Depending on the type of breast, the length from the center of shoulder to the nipple, the diameter of breast, upper length of breast, and the position of nipple, are different. In conical or protruding breast, the wearing sensation is better when the nipple point of brassiere was lifted, by modifying the upper and lower lengths of breast. Considering the wearing sensation and function of a brassiere, it was better to leave the wearer's size as it is and use a pad within the same cup, rather than increase the basal area of the breast in order to increase the volume.

RHEOLOGICAL CHARACTERIZATION OF COMPOSITES USING A VERTICAL OSCILLATION RHEOMETER (수직 진동형 Rheometer를 이용한 복합레진의 유변학적 성질의 측정)

  • Lee, In-Bog;Cho, Byung-Hoon;Son, Ho-Hyun;Lee, Sang-Tag;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.489-497
    • /
    • 2004
  • Objective: The purpose of this study was to investigate the viscoelastic properties related to handling characteristics of composite resins, Methods: A custom designed vertical oscillation rheometer (VOR) was used for rheological measurements of composites. The VOR consists of three parts: (1) a measuring unit, (2) a deformation induction unit and (3) a force detecting unit, Two medium viscous composites, Z100 and Z250 and two packable composites, P60 and SureFil were tested. The viscoelastic material function, including complex modulus $E^{*}$ and phase angle ${\delta}$, were measured. A dynamic oscillatory test was used to evaluate the storage modulus (E'), loss modulus (E") and loss tangent ($tan{\delta}$) of the composites as a function of frequency ($\omega$) from 0.1 to 20 Hz at $23^{\circ}C$. Results: The E' and E" increased with increasing frequency and showed differences in magnitude between brands. The $E^{*}s$ of composites at ${\omega}{\;}={\;}2{\;}Hz$, normalized to that of Z100, were 2.16 (Z250), 4,80 (P60) and 25.21 (SureFil). The magnitudes and patterns of the change of $tan{\delta}$ of composites with increasing frequency were significantly different between brands. The relationships between the complex modulus $E^{*}$, the phase angle ${\delta}$ and the frequency \omega were represented by frequency domain phasor form, $E^{*}{\;}(\omega){\;}={\;}E^{*}e^{i{\delta}}{\;}={\;}E^{*}{\angle}{\delta}$. Conclusions: The viscoelasticity of composites that influences handling characteristics is significant different between brands, The VOR is a relatively simple device for dynamic, mechanical analysis of high viscous dental composites. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composites.