• Title/Summary/Keyword: tandem circular cylinders

Search Result 17, Processing Time 0.026 seconds

Wind tunnel study of wake-induced aerodynamics of parallel stay-cables and power conductor cables in a yawed flow

  • Jafari, Mohammad;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.617-631
    • /
    • 2020
  • Wake-induced aerodynamics of yawed circular cylinders with smooth and grooved surfaces in a tandem arrangement was studied. This pair of cylinders represent sections of stay-cables with smooth surfaces and high-voltage power conductors with grooved surfaces that are vulnerable to flow-induced structural failure. The study provides some insight for a better understanding of wake-induced loads and galloping problem of bundled cables. All experiments in this study were conducted using a pair of stationary section models of circular cylinders in a wind tunnel subjected to uniform and smooth flow. The aerodynamic force coefficients and vortex-shedding frequency of the downstream model were extracted from the surface pressure distribution. For measurement, polished aluminum tubes were used as smooth cables; and hollow tubes with a helically grooved surface were used as power conductors. The aerodynamic properties of the downstream model were captured at wind speeds of about 6-23 m/s (Reynolds number of 5×104 to 2.67×105 for smooth cable and 2×104 to 1.01×105 for grooved cable) and yaw angles ranging from 0° to 45° while the upstream model was fixed at the various spacing between the two model cylinders. The results showed that the Strouhal number of yawed cable is less than the non-yawed case at a given Reynolds number, and its value is smaller than the Strouhal number of a single cable. Additionally, compared to the single smooth cable, it was observed that there was a reduction of drag coefficient of the downstream model, but no change in a drag coefficient of the downstream grooved case in the range of Reynolds number in this study.

Flow-induced Vibration Characteristics of Two Circular Cylinders in a Side-by-Side Arrangement and the Vibration Mechanism (병렬 배열된 2 원기둥의 유력 진동 특성과 그 메커니즘)

  • Kim, Sang-Il;Lee, Seung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • This experimental study investigated the characteristics of flow-induced vibration of two elastically supported circular cylinders in a side-by-side arrangement. In particular, the characteristics of the flow-induced vibration of the two cylinders are investigated by changing the flow speed at each spacing ratio L/D (L is the space between two cylinders and D is the diameter of the cylinder). To clarify the mechanism generating the flow-induced vibration of the cylinders, the flow patterns around the two vibrating cylinders are also investigated using a flow visualization test that reproduces the flow-induced vibration of the cylinders with a forced vibration apparatus. As a result, it is clarified that the flow-induced vibration characteristics of the two cylinders arranged side-by-side switch among four patterns as the flow between the two cylinders is switched. Among the three arrangements considered (tandem, staggered, and side-by-side), the arrangement that generates flow-induced vibration of the two cylinders most easily is the side-by-side arrangement.

A Numerical Calculation on Flow Fields around Two-Dimensional Multiple Bodies In Overlapped Grid System (중첩격자계를 사용한 2차원 복수 물체주위 유동장의 수치 계산)

  • Jeong Se-Min;Lee Young-Gill;Lee Seung-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.105-110
    • /
    • 1996
  • In the present paper, flow fields around two dimensional single and two circular cylinders are analysed by a finite difference method. Navier-Stokes and the continuity equations an solved to simulate the flow fields. A overlapped grid system(the composite of a body boundary-fitted grid system near the body and a rectangular grid system for other flow fields) is used for this calculation. In the use of overlapped grid system, it is most significant thing to exchange the physical quantities from one grid system to the other one continuously, In this research, the linear interpolations of physical quantaties are done for this purpose in the overlapped region. The numerical calculations are carried out for the flows around a circular cylinder and two cylinders to verify the accuracy of present method. The flow fields around two cylinders facing the flow with side by side and tandem arrangement are analysed. The results are compared to other experimental and computational ones done in other single grid system.

  • PDF

The Visualization of the Flowfield around Three Circular Cylinders in the Tandem Arrangement by the PIV (PIV에 의한 직렬배열 상태에 놓인 3원주 주위의 유동장 가시화)

  • Ro, Ki-Deok;Jang, Dong-Hyu;Bae, Hung-Sub;Kim, Won-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.264-270
    • /
    • 2011
  • The Characteristics of the flowfield around three circular cylinders in tandem arrangement was investigated by PIV. Strouhal numbers, vorticity, velocity vectors and velocity profiles were observed at centre-to-centre space ratios of P/D=1.25~3.75, and Reynolds number of Re=$3.0{\times}10^3{\sim}5.0{\times}10^3$. As the results the Strouhal numbers measured in the rear region of 3rd the cylinder were distinguished three kind of regions with the space ratios and The flow pattern in the wake of each cylinder was different according to these regions. The time averaged flow at region of each cylinder was almost stagnated and the size of the stagnated region was small in order of 1st, 2nd and 3rd cylinder. The direction of vortex at the front and rear region of 2nd cylinder was opposed each other with the small difference(${\alpha}= {\pm}5^{\circ}$) of the attack angle ${\alpha}$.

A study on fluid flow and heat transfer around the circular cylinder located on a flat plate in crossflow (횡단류 내 평판 위에 놓인 원형 실린더 주위의 유동장 및 열전달에 관한 연구)

  • Lee, Gi-Baek;Son, Jeong-Ho;Yang, Jang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1458-1471
    • /
    • 1996
  • The present study is concerned with the heat transfer enhancement associated with a symmetrical or asymmetrical horseshoe vortex in front of and around the circular cylinder centered between the side walls of a wind tunnel. The static pressure measurements and the flow visualization in front of and around cylinders have been performed to determine the existence of horseshoe vortex. The hue-capturing method using the thermochromatic liquid crystals with great spatial resolution was used to obtain the local information of the endwall heat transfer coefficients. In case of one cylinder, the convective heat transfer coefficients of the region where the horseshoe vortex exists are larger than those of any other region. In case of two cylinders with tandem arrangement, the heat transfer rate of gap spacing (d/D= 1.5) is higher than that of gap spacings (d/D=2.0 or 2.5).

Numerical analysis of the cross-flow past circular cylinders at low Reynolds number for effective breakwater arrangement (방파제의 효율적 배치를 알아보기 위한 실린더의 2차원 유동분석)

  • Cheon, Su-Min;Choe, Yun-Yeong
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.568-573
    • /
    • 2014
  • 본 연구에서는 원형으로 모델링 된 실린더들에 균일한 유동이 흐를 때, 실린더들의 배치에 따른 이차원 층류 유동을 분석하였다. EDISON_CFD를 이용해서 실린더간의 거리와 주기적 배열에 따라 개별 실린더들의 항력계수와 평균 항력계수의 분석을 통해 항력계수가 최대가 되는 실린더 배열을 확인하였다. 이를 위해 계산영역과 최대격자수에 따른 정확도를 분석하였다. 가로 배열(tandem position)에서의 효율적 항력 거리를 확인하였다. 세로 배열(side-by-side position)에서의 효율적 항력 거리를 확인하였다. 위의 결과들로 9개의 실린더를 3개씩 3열로 배치하고, 주기적 배열과 엇갈림 배열로 나누어 효율적 항력 배치를 확인하였다.

  • PDF

Predicted Air Flow Around Objects Using the Discrete Vortex Method

  • Kim, Tae-Hyeung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.E
    • /
    • pp.347-357
    • /
    • 1993
  • The Lagrangian grid-free numerical method, the discrete vortex method, was applied to solve the Navier-Stokes euqations. This method avoids the introduction of numerical viscosity swamping the real physical viscosity at high Reynolds number, unlike Eulerian method, e.g. finite difference and element methods. The boundary integral equation method for the potential flow solution was included to make the discrete vortex method more feasible for complex geometries. The fast adaptive multipole expansion method was incorporated to reduce the computational time from $O(N^2)$ to O(N) for the computations of vortex-vortex interactions. The test problems were air flow around one circular cylinder and two circular cylinders in tandem with various gaps. The numerical results were in excellent gareement with the experimental and other computational results. The applicabilty of the method was discussed with the indoor and the outdoor air pollution problems, especially the contaminant transport in the recirculation regions.

  • PDF