• 제목/요약/키워드: tall steel structures

검색결과 97건 처리시간 0.025초

초고층 다이아그리드 노드의 최적설계과정 (Optimization Design Process of Diagrid Node for Tall buildings)

  • 김상대;배재훈;주영규;김영주;김도현
    • 한국강구조학회 논문집
    • /
    • 제23권2호
    • /
    • pp.211-220
    • /
    • 2011
  • 다이아그리드 구조시스템은 현재 초고층의 하나의 트렌드로써 미적일뿐 아니라 구조적으로 효율적인 시스템이다. 그러나 이러한 효율적인 다이아그리드가 실제적으로 시공이 어려운 데에는 접합부의 문제가 가장 크다. 접합부는 시공상 어려울 뿐만 아니라, 무엇보다 비용이 많이 들어가기 때문에 실질적으로 다이아그리드 구조를 채택하지 못하고 계획단계에서 그치는 경우가 많다. 본 논문에서는 다이아그리드 노드의 구조적인 물량을 절약하면서 구조적으로 효율적인 다이아 그리드 접합부 모델을 유한요소 해석을 통해서 제안하고 이를 실험에 직접 적용을 시켜 봄으로써 그 효율성을 검증하고자 한다.

Behavior of steel-concrete composite beam using angle shear connectors at fire condition

  • Davoodnabi, Seyed Mehdi;Mirhosseini, Seyed Mohammad;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.141-147
    • /
    • 2019
  • Fire is one of the environmental parameters affecting the structure causing element internal forces to change, as well as reducing the strength of the materials. One of the common types of floors in tall steel structures is the steel concrete composite slab. Shear connectors are used in steel and concrete composite beam in various shapes also has played significant role in a burning fire event of building with a steel concrete composite beam. The current study has reviewed the effects of temperature raising on the angle connector behavior through the use of push out tests and monotonic static force. The results have shown (1) the ductility of the samples is acceptable based on EC4 standard; (2) temperature raising has reduced the stiffness; (3) the shear ductility increment; and (4) the shear capacity reduction. Also, the amount of angle shear connector resistance has been decreased from 18.5% to 41% at ambient temperature up to $850^{\circ}C$.

Evaluation of Progressive Collapse Resisting Capacity of Tall Buildings

  • Kwon, Kwangho;Park, Seromi;Kim, Jinkoo
    • 국제초고층학회논문집
    • /
    • 제1권3호
    • /
    • pp.229-235
    • /
    • 2012
  • In this paper the progressive collapse potential of building structures designed for real construction projects were evaluated based on arbitrary column removal scenario using various alternate path methods specified in the GSA guidelines. The analysis model structures are a 22-story reinforced concrete moment frames with core wall building and a 44-story interior concrete core and exterior steel diagrid structure. The progressive collapse resisting capacities of the model structures were evaluated using the linear static, nonlinear static, and nonlinear dynamic analyses. The linear static analysis results showed that progressive collapse occurred in the 22-story model structure when an interior column was removed. However the structure turned out to be safe according to the nonlinear static and dynamic analyses. Similar results were observed in the 44-story diagrid structure. Based on the analysis results, it was concluded that, compared with nonlinear analysis procedures, the linear static method is conservative in the prediction of progressive collapse resisting capacity of building structure based on arbitrary column removal scenario.

The Chinese Performance-based Code for Fire-resistance of Steel Structures

  • Li, Guo-Qiang;Zhang, Chao
    • 국제초고층학회논문집
    • /
    • 제2권2호
    • /
    • pp.123-130
    • /
    • 2013
  • In the past two decades, researchers from different countries have conducted series of experimental and theoretical studies to investigate the behaviour of structures in fire. Many new insights, data and calculation methods have been reported, which form the basis for modern interdisciplinary structural fire engineering. Some of those methods are now adopted in quantitative performance-based codes and have been migrated into practice. Mainly based on the achievements in structural fire research at China, the Chinese national code for fire safety of steel structures in buildings has been drafted and approved, and will be released in this year. The code is developed to prevent steel structures subjected to fire from collapsing, ensure safe evacuation of building occupants, and reduce the cost for repairing the damages of the structure caused by fire. This paper presents the main contents of the code, which includes the fire duration requirements of structural components, fundamental requirements on fire safety design of steel components, temperature increasing of atmosphere and structural components in fire, loading effect and capacity of various components in fire, and procedure for fire-resistant check and design of steel components. The analytical approaches employed in the code and their validation works are also presented.

Efficiency of stiffening plates in fabricated concrete-filled tubes under monotonic compression

  • Albareda-Valls, Albert;Carreras, Jordi Maristany
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.1023-1044
    • /
    • 2015
  • Concrete-filled tubes (CFT), formed by an outer steel tube filled with plain or reinforced concrete inside, have been increasingly used these recent decades as columns or beam-columns, especially for tall buildings in seismic areas due to their excellent structural response. This improved behavior is derived from the effect of confinement provided by the tube, since the compressive strength of concrete increases when being subjected to hydrostatic pressure. In circular CFTs under compression, the whole tube is uniformly tensioned due to the radial expansion of concrete. Contrarily, in rectangular and square-shaped CFTs, the lateral flanges become subjected to in-plane bending derived from this volumetric expansion, and this fact implies a reduction of the confinement effect of the core. This study presents a numerical analysis of different configurations of CFT stub columns with inner stiffening plates, limited to the study of the influence of these plates on the compressive behavior without eccentricity. The final purpose is to evaluate the efficiency in terms of strength and ductility of introducing stiffeners into circular and square CFT sections under large deformation axial loading.

Development of Seismic Retrofit Devices for Building Structures

  • Kim, Jinkoo
    • 국제초고층학회논문집
    • /
    • 제8권3호
    • /
    • pp.221-227
    • /
    • 2019
  • In this paper passive seismic retrofit devices for building structures developed by the author in recent years are introduced. The proposed damping devices were developed by slightly modifying the configuration of conventional devices and enhancing their effectiveness. First a seismic retrofit system consisting of a pin-jointed steel frame and rotational friction dampers installed at each corner of the steel frame was developed. Then two types of steel slit dampers were developed; box-type slit damper and multi-slit damper. In addition, hybrid dampers were developed by combining a slit damper and a friction damper connected in parallel. Finally a self-centering system was developed by using preloaded tendons and viscous dampers connected in series. For each retrofit system developed, an appropriate analytical model was developed, and the seismic performance was verified by loading test and earthquake analysis of case study structures. The experimental and analysis results show that the proposed systems can be used efficiently to enhance the seismic performance of building structures.

Robustness Design For Tall Timber Buildings

  • Voulpiotis, Konstantinos;Frangi, Andrea
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.245-253
    • /
    • 2020
  • With the ever-increasing height of timber buildings, the complexity of timber as a structural material gives rise to behaviors not previously studied by engineers. An urgent call is needed regarding their performance in damage scenarios: activating alternative load paths in tall timber buildings is not the same as in tall buildings made with steel and concrete. In this paper we propose a robustness framework covering all building materials, whose application in timber may lead to new conceptual designs for the next generation of tall timber buildings. Qualitatively, the importance of building scale and the distinction between localized and systematic exposures are discussed, and how existing supertall structures can be an example for future generations of tall timber buildings. Quantitatively, the robustness index is introduced alongside a method to calculate the performance of a given building regarding robustness, in order to find the most cost-effective structural solutions for improved robustness. A three-level application recommendation is made, depending on the importance of the building in question. Primarily, the paper highlights the importance of conceptual design to achieve structural robustness and encourages the practicing engineering community to use the proposed framework to quantitatively come up with the new generation of tall timber buildings.

"Buildings Without Walls:" A Tectonic Case for Two "First" Skyscrapers

  • Leslie, Thomas
    • 국제초고층학회논문집
    • /
    • 제9권1호
    • /
    • pp.53-60
    • /
    • 2020
  • "A practical architect might not unnaturally conceive the idea of erecting a vast edifice whose frame should be entirely of iron, and clothing the frame--preserving it--by means of a casing of stone…that shell must be regarded only as an envelope, having no function other than supporting itself..." --Viollet-le-Duc, 1868. Viollet-le-Duc's recipe for an encased iron frame foresaw the separation of structural and enclosing functions into discrete systems. This separation is an essential characteristic of skyscrapers today, but at the time of his writing cast iron's brittle nature meant that iron frames could not, on their own, resist lateral forces in tall structures. Instead, tall buildings had to be braced with masonry shear walls, which often also served as environmental enclosure. The commercial availability of steel after the 1880s allowed for self-braced metal frames while parallel advances in glass and terra cotta allowed exterior walls to achieve vanishingly thin proportions. Two Chicago buildings by D.H. Burnham & Co. were the first to match a frame "entirely of iron" with an "envelope" supporting only itself. The Reliance Building (1895) was the first of these, but the Fisher Building (1896) more fully exploited this new constructive typology, eschewing brick entirely, to become the first "building without walls," a break with millennia of tall construction reliant upon masonry

효용적인 알고리즘에 의한 초고층건물의 비탄성 해석 연구 (Investigation on Inelastic Behavior of Tall Buildings Based on Efficient Analysis Algorithm)

  • 주영규;홍원기;김상대;박칠림
    • 한국강구조학회 논문집
    • /
    • 제10권1호통권34호
    • /
    • pp.115-123
    • /
    • 1998
  • 철골조 초고층건물의 설계에 있어서 구조물의 극한상태는 탄성해석으로는 구할 수가 없다. 현재의 비탄성 해석프로그램은 중대형에서 수행되고 있으며 사용하기가 복잡하고 그 결과값을 분석하는데 많은 노력과 시간이 요구되기 때문에 실무분야에서 비탄성 해석은 사용성에서 어려움이 있다. 본 연구에서는 잔여응력계수를 사용한 방법을 이용한 PC용 비탄성 해석법을 실제 초고층건물에 적용하여 탄성설계된 구조물에 대한 비탄성해석을 수행하였다. 또한 시스템 연성을 증대시키기 위한 구조시스템 변경방법에 관해 제시하고 있다.

  • PDF

Design guides to resist progressive collapse for steel structures

  • Mirtaheri, M.;Zoghi, M. Abbasi
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.357-378
    • /
    • 2016
  • The progressive collapse phenomenon in structures has been interested by civil engineers and the building standards organizations. This is particularly true for the tall and special buildings ever since local collapse of the Ronan Point tower in UK in 1968. When initial or secondary defects of main load carrying elements, overloads or unpredicted loads occur in the structure, a local collapse may be arise that could be distributed through entire structure and cause global collapse. One is not able to prevent the reason of failure as well as the prevention of propagation of the collapse. Also, one is not able to predict the start point of collapse. Therefore we should generalize design guides to whole or the part of structure based on the risk analysis and use of load carrying elements removal scenario. There are some new guides and criteria for elements and connections to be designed to resist progressive collapse. In this paper, codes and recommendations by various researchers are presented, classified and compared for steel structures. Two current design methods are described in this paper and some retrofitting methods are summarized. Finally a steel building with special moment resistant frame is analyzed as a case study based on two standards guidelines. This includes consideration of codes recommendations. It is shown that progressive collapse potential of the building depends on the removal scenario selection and type of analysis. Different results are obtained based on two guidelines.