• Title/Summary/Keyword: tall building response

Search Result 186, Processing Time 0.023 seconds

Extracting parameters of TMD and primary structure from the combined system responses

  • Wang, Jer-Fu;Lin, Chi-Chang
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.937-960
    • /
    • 2015
  • Tuned mass dampers (TMDs) have been a prevalent vibration control device for suppressing excessive vibration because of environmental loadings in contemporary tall buildings since the mid-1970s. A TMD must be tuned to the natural frequency of the primary structure to be effective. In practice, a TMD may be assembled in situ, simultaneously with the building construction. In such a situation, the respective dynamic properties of the TMD device and building cannot be identified to determine the tuning status of the TMD. For this purpose, a methodology was developed to obtain the parameters of the TMD and primary building on the basis of the eigenparameters of any two complex modes of the combined building-TMD system. The theory was derived in state-space to characterize the nonclassical damping feature of the system, and combined with a system identification technique to obtain the system eigenparameters using the acceleration measurements. The proposed procedure was first demonstrated using a numerical verification and then applied to real, experimental data of a large-scale building-TMD system. The results showed that the procedure is capable of identifying the respective parameters of the TMD and primary structure and is applicable in real implementations by using only the acceleration response measurements of the TMD and its located floor.

Seismic Retrofit of High-Rise Building with Deformation-Dependent Oil Dampers against Long-Period Ground Motions

  • Aono, Hideshi;Hosozawa, Osamu;Shinozaki, Yozo;Kimura, Yuichi
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.177-186
    • /
    • 2016
  • Along the subduction-zone of the western Japanese islands, large earthquakes are expected occur around the middle of this century, and long-period ground motions will reach major urban areas, shaking high-rise buildings violently. Since some old high-rise buildings were designed without considering long-period ground motions, reinforcing such buildings is an important issue. An effective method to reinforce existing high-rise buildings is installing additional dampers. However, a problem with ordinary dampers is that they require reinforcement of surrounding columns and girders to support large reaction forces generated during earthquake ground motion. To solve this problem, a deformation-dependent oil damper was developed. The most attractive feature of this damper is to reduce the damping force at the moment when the frame deformation comes close to its maximum value. Due to this feature, the reinforcement of columns, girders, and foundations are no longer required. The authors applied seismic retrofitting with a deformation-dependent oil damper to an existing 54-story office building (Shinjuku Center Building) located in Shinjuku ward, Tokyo, in 2009 to suppress vibration under the long period earthquake ground motions. The seismic responses were observed in the 2011 Tohoku Earthquake, and it is clarified that the damping ratio was higher and the response lower by 20% as compared to the building without dampers.

Towards Instant Availability and Full Life Cycle Resilience in Vertical Cities: Automated Deployment and Transformation of High-Rise Buildings to Mitigate Social Challenges

  • Thomas Bock;Rongbo Hu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.75-86
    • /
    • 2022
  • High-rise buildings often can accommodate the population of small horizontal cities. The investment in high-rise buildings is considerable and therefore a rapid return on investment is necessary. The immediate availability of high-rise buildings can be achieved by automated prefabrication of highly finished modules and their instant on-site assembly by robotic and automated construction sites. A high-rise building as a vertical city can be considered as a sophisticated organism that can constantly change throughout its lifecycle in response to economic growth, demographic change, and environmental pressures. To date, many new urban high-rise developments claim to be "vertical cities", yet few represent this important characteristic. This article analyzed the technological readiness and innovations in the field of construction automation and robotics including single-task construction robots, automated on-site construction factories, and ambient assisted living. These technological advances enable the realization of future vertical cities that are able to continuously grow and transform in terms of form and function. Finally, the article proposes a visionary archetype of vertical city in the name of "dynamic vertical urbanism" that is easy to expand vertically and horizontally in order to achieve instant availability and full life cycle resilience thanks to advanced building technologies.

Development of Large Tuned Mass Damper with Stroke Control System for Seismic Upgrading of Existing High-Rise Building

  • Hori, Yusuke;Kurino, Haruhiko;Kurokawa, Yasushi
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.167-176
    • /
    • 2016
  • This paper describes a large tuned mass damper (TMD) developed as an effective seismic control device for an existing highrise building. To realize this system, two challenges needed to be overcome. One was how to support a huge mass that has to move in any direction, and the second was how to control mass displacement that reaches up to two meters. A simple pendulum mechanism with strong wires was adopted to solve the first problem. As a solution to the important latter problem, we developed a high-function oil damper with a unique hydraulic circuit. When the mass velocity reaches a certain value, which was predetermined by considering the permissible displacement, the damper automatically and drastically increases its damping coefficient and limits the mass velocity. This velocity limit function can effectively and stably control the mass displacement without any external power. This paper first examines the requirements of the TMD using a simple model and clarifies the constitution of the actual TMD system. Then the seismic upgrading project of an existing high-rise building is outlined, and the developed TMD system and the results of performance tests are described. Finally, control effects for design earthquakes are demonstrated through response analyses and construction progress is introduced.

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai;Mingfeng Huang;Xiao Li;Haiwei Xu;Binbin Li;Chen Yang
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.445-460
    • /
    • 2023
  • Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.

Use of TLD and MTLD for Control of Wind-Induced Vibration of Tall Buildings

  • Kim, Young-Moon;You, Ki-Pyo;Ko, Nag-Ho;Yoon, Sung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1346-1354
    • /
    • 2006
  • Excessive acceleration experienced at the top floors in a building during wind storms affect the serviceability of the building with respect to occupant comfort and discomfort. Tuned liquid damper (TLD) and multiple tuned liquid damper (MTLD), which are passive control devices consisting of a rigid tank filled with liquid, are used to suppress vibration of structures. These TLD and MTLD offer several potential advantages-low costs, easy installation in existing structures and effectiveness even for small-amplitude vibrations. This study carries out a theoretical estimation of the most effective damping ratios that can be achieved by TLD and MTLD. Damping by TLD an MTLD reduced the frequency response of high-rise buildings by approximately 40% in urban and suburban areas.

Reinforced concrete core-walls connected by a bridge with buckling restrained braces subjected to seismic loads

  • Beiraghi, Hamid
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.203-214
    • /
    • 2018
  • Deflection control in tall buildings is a challenging issue. Connecting of the towers is an interesting idea for architects as well as structural engineers. In this paper, two reinforced concrete core-wall towers are connected by a truss bridge with buckling restrained braces. The buildings are 40 and 60-story. The effect of the location of the bridge is investigated. Response spectrum analysis of the linear models is used to obtain the design demands and the systems are designed according to the reliable codes. Then, nonlinear time history analysis at maximum considered earthquake is performed to assess the seismic responses of the systems subjected to far-field and near-field record sets. Fiber elements are used for the reinforced concrete walls. On average, the inter-story drift ratio demand will be minimized when the bridge is approximately located at a height equal to 0.825 times the total height of the building. Besides, because of whipping effects, maximum roof acceleration demand is approximately two times the peak ground acceleration. Plasticity extends near the base and also in major areas of the walls subjected to the seismic loads.

Design and implementation of AMD system for response control in tall buildings

  • Teng, J.;Xing, H.B.;Xiao, Y.Q.;Liu, C.Y.;Li, H.;Ou, J.P.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.235-255
    • /
    • 2014
  • This paper mainly introduces recently developed technologies pertaining to the design and implementation of Active Mass Damper (AMD) control system on a high-rise building subjected to wind load. Discussions include introduction of real structure and the control system, the establishment of analytical model, the design and optimization of a variety of controllers, the design of time-varying variable gain feedback control strategy for limiting auxiliary mass stroke, and the design and optimization of AMD control devices. The results presented in this paper demonstrate that the proposed AMD control systems can resolve the issues pertaining to insufficient floor stiffness of the building. The control system operates well and has a good sensitivity.

Shaking table test of wooden building models for structural identification

  • Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • In this paper, it is aimed to present a comparative study about the structural behavior of tall buildings consisting of different type of materials such as concrete, steel or timber using finite element analyses and experimental measurements on shaking table. For this purpose, two 1/60 scaled 28 and 30-stories wooden building models with $40{\times}40cm$ and $35{\times}35cm$ ground/floor area and 1.45 m-1.55 m total height are built in laboratory condition. Considering the frequency range, mode shapes, maximum displacements and relative story drifts for structural models as well as acceleration, displacement and weight limits for shaking table, to obtain the typical building response as soon as possible, balsa is selected as a material property, and additional masses are bonded to some floors. Finite element models of the building models are constituted in SAP2000 program. According to the main purposes of earthquake resistant design, three different earthquake records are used to simulate the weak, medium and strong ground motions. The displacement and acceleration time-histories are obtained for all earthquake records at the top of building models. To validate the numerical results, shaking table tests are performed. The selected earthquake records are applied to first mode (lateral) direction, and the responses are recorded by sensitive accelerometers. Comparisons between the numerical and experimental results show that shaking table tests are enough to identify the structural response of wooden buildings. Considering 20%, 10% and 5% damping rations, differences are obtained within the range 4.03-26.16%, 3.91-65.51% and 6.31-66.49% for acceleration, velocity and displacements in Model-1, respectively. Also, these differences are obtained as 0.49-31.15%, 6.03-6.66% and 16.97-66.41% for Model-2, respectively. It is thought that these differences are caused by anisotropic structural characteristic of the material due to changes in directions parallel and perpendicular to fibers, and should be minimized using the model updating procedure.

Evaluating Wind Load and Wind-induced Response of a Twin Building using Proper Orthogonal Decomposition (트윈 빌딩의 적합 직교 분해 기법을 이용한 풍하중 및 풍응답 평가)

  • Kim, Bub-Ryur
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.309-314
    • /
    • 2018
  • The wind load and structural characteristics of a twin building are more complex than those of conventional high-rise buildings. The pressure load due to wind on a twin building was therefore measured via wind tunnel experiments to analyze such characteristics. The wind pressure pattern was then deduced from measured data using proper orthogonal decomposition. Channeling and vortex shedding were observed in the first and second modes, respectively. The along-wind loads on the two buildings featured a positive correlation and the cross-wind loads featured no correlation. Such a correlation affected the wind-induced displacement. The structural member connecting the two buildings had an insignificant effect on the positive correlation, but it notably reduced the wind-induced displacement with a negative correlation.