• Title/Summary/Keyword: tall building construction

Search Result 303, Processing Time 0.022 seconds

Design and Construction of the Burj Dubai Concrete Building Project (버즈 두바이 콘크리트 건물의 설계와 시공)

  • Abdelrazaq, Ahmad
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.28-35
    • /
    • 2008
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. While the early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this multi-use/residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria, the material selection for the structural systems of the tower was also a major consideration and required detailed evaluation of the material technologies and skilled labor available in the market at the time Concrete was selected for its strength, stiffness, damping, redundancy, moldability, free fireproofing, speed of construction, and cost effectiveness. In addition, the design challenges of using concrete for the design of the structural system components will be addressed. The focus on this paper will also be on the early planning of the concrete works of the Burj Dubai Project.

Numerical Simulation of Temperature Gradients for the Mass Concrete Foundation Slab of Shanghai Tower

  • Gong, Jian;Cui, Weijiu;Yuan, Yong;Wu, Xiaoping
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.283-290
    • /
    • 2015
  • Crack control remains a primary concern for mass concrete structures, where the majority of cracking is caused by temperature changes during the hydration process. One-time pouring is a useful construction method for mass concrete structures. The suitability of this method for constructingon of the Shanghai Tower's mass concrete foundation slab of Shanghai Tower is considered here by a numerical simulation method based on a 6- meter- thick slab. Some of the conclusions, which can be verified by monitoring results conducted during construction, are as follows. The temperature gradient is greater in the vertical direction than in the radial direction, therefore, the vertical temperature gradient should be carefully considered for the purpose of crack control. Moreover, owing to cooling conditions at the surfaces and the cement mortar content of the slab, the temperatures and temperature gradients with respect to time vary according to the position within the slab.

Comparison of Damping for Steel Tall Buildings by Half Power Bandwidth and Random Decrement Method (철골조 고층건물의 하프파워법과 RD법에 의한 감쇠율 비교)

  • Yoon, Sung-Won;Ju, Young Kyu;Shin, Sang Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.107-115
    • /
    • 2007
  • In this paper, the damping ratios of two methods, namely the half-power bandwidth method and random decrement method from the vibration measurement were examined. Ambient vibration tests were conducted on two steel-framed and one composite tall building ranging from 27 to 36 stories. The performance of the half-power bandwidth method was investigated using four sample sizes, such as 1024, 2048, 4096 and 8192. Damping by the half-power bandwidth method is slightly more overestimated than the random decrement method due to insufficient record length. Damping evaluation by the half-power bandwidth method was found to be enhanced when using the narrower bandwidth with long recorded data.

Durability Evaluation of High-Performance, Low-Heat Self-Compacting Concrete for Foundation of Tall Buildings (초고층 건축물 매트 기초용 고성능 콘크리트 내구성 평가)

  • Kim, Young-Bong;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • Concrete used for the foundation of high-rise buildings is often placed through in an integrated pouring to ensure construction efficiency and quality. However, if concrete is placed integrally, there is a high risk of temperature cracking during the hydration reaction, and it is necessary to determine the optimal mixing design of high-performance, high-durable concrete through the replacement of the admixture. In this study, experiments on salt damage, carbonation, and sulfate were conducted on the specimen manufactured from the optimal high-performance low-heating concrete combination determined in the author's previous study. The resistance of the cement matrix to chlorine ion diffusion coefficient, carbonation coefficient, and sulfate was quantitatively evaluated. In the terms of compression strength, it was measured as 141% compared to the structural design standard of KCI at 91 days. Excellent durability was expressed in carbonation and chlorine ion diffusivity performance evaluation. In particular, the chlorine ion diffusion coefficient, which should be considered the most strictly in the marine environment, was measured at a value of 4.09×E-12m2/y(1.2898×E-10m2/s), and is expected to be used as a material property value in salt damage durability analysis. These results confirmed that the latent hydroponics were due to mixing of the admixture and high resistance was due to the pozzolane reaction.

Stability of multi-step flexural-shear plates with varying cross-section

  • Xu, J.Y.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.597-612
    • /
    • 2003
  • In this paper, multi-story buildings with shear-wall structures and with narrow rectangular plane configuration are modeled as a multi-step flexural-shear plate with varying cross-section for buckling analysis. The governing differential equation of such a plate is established. Using appropriate transformations, the equation is reduced to analytically solvable equations by selecting suitable expressions of the distribution of stiffness. The exact solutions for buckling of such a one-step flexural-shear plate with variable stiffness are derived for several cases. A new exact approach that combines the transfer matrix method and closed from solution of one-step flexural-shear plate with continuously varying stiffness is presented for stability analysis of multi-step non-uniform flexural-shear plate. A numerical example shows that the present methods are easy to implement and efficient.

Development of Reinforced Concrete Column and Steel Beam Composite Joints (철근콘크리트 기둥과 철골 보 합성구조 접합부 시스템 개발)

  • 김도균;정하선;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.691-698
    • /
    • 2001
  • Recent trends in the construction of long span or tall building frames feature the increase use of composite members that steel and concrete is functioning together in what terms of mixed structural systems. One of such systems, RCS (reinforced concrete column and steel beam) system is introduced and closely examined focusing on bearing strength of the composite joint in this paper. The main objective of this study was to develope detail to increase bearing capacity while bearing failure is one of the two primary modes of failure in RCS system. The results show that specimens with the U-type bearing reinforcement detail developed in this study enhanced the bearing strength by 1.20-1.50. The U-type reinforcement is the effective details to increase joint bearing strength compared to others like vertical reinforcement welded to beam flanges.

  • PDF

Strength Evaluation for Cap Plate on the Node Connection in Circular Steel Tube Diagrid System

  • Lee, Seong-Hui;Kim, Jin-Ho;Choi, Sung-Mo
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Diagrid system has been in the spotlight for its superiority in terms of the resistance to lateral force when applied to skyscrapers. In diagrid system, most of columns can be eliminated because vertical loads (gravity loads) and horizontal loads (lateral loads) are delivered simultaneously thanks to the triangular shape of diagrid. However, lack of studies on connection shape and node connection details makes it hard to employ the system to the buildings. In this study, the structural safety of the node connections in circular steel tube diagrid system which has been considered in the Cyclone Tower in Korea (Seven stories below and fifty-one above the ground) was evaluated using the 4 full-scale specimens. The parameters are the extended length (20 mm, 40 mm & 60 mm), thickness (40 mm & 50 mm).

Experimental Study on the Structural Performance of Hybrid Friction Damper (혼합형 마찰댐퍼 구조성능에 대한 실험적 연구)

  • Kim, Do-Hyun;Kim, Ji-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.103-110
    • /
    • 2015
  • Various hybrid dampers have been developed as increasing tall buildings in Korea. To minimize the installment space and cost, the new hybrid friction damper was developed using friction components. It is composed of two one-nodal rotary frictional components and a slotted bolted frictional connection. Because of these components, hybrid friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, displacement amplitude dependency tests were carried out to evaluate on the structural performance and the multi-slip mechanism of the hybrid damper. Test results show that the multi-slip mechanism is verified and friction coefficients are increasing as displacement amplitudes are increasing.

Performance Evaluation of Fire Resistance of High Strength Concrete by Incorporation of Combined Fiber (복합섬유 혼입에 따른 고강도콘크리트의 내화 성능 평가)

  • Shin, Jae-Kyung;Park, Jong-Ho;Jeong, Yong;Moon, Hyung-Jae;Kim, Jeong-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.423-424
    • /
    • 2010
  • This study purpose is to develop the high fireproof concrete which applied method of combined fiber mixed with polymer powder and organic fiber which can satisfy flowability and the fire resistance properties for construction of the super tall building. According to the results, in case of polymix it is effective to the reduction of internal temperature rise and spalling resistance so it as fire resistance that is similar to existing fiber cocktail.

  • PDF

A Study on Intelligent Predictive PID Control Systems for Vibration of Structure due to Environmental Loads (환경적 부하로 인해 발생되는 건축물의 진동을 위한 지능형 예측 PID 제어시스템에 관한 연구)

  • Cho, Hyun-C.;Lee, Young-J.;Lee, Jin-W.;Lee, Kwoon-S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.798-800
    • /
    • 1998
  • In recent years, advances in construction techniques and materials have given rise to flexible light-weight structures. Because these structures extremely susceptib environmental loads, these random loadings u produce large deflection and acceleration on structures. Vibration control system of structur becoming an integral part of the structural syst the next generation of tall building. The proposed control system is applied to s degree of structure with mass damping and com with conventional PID and neural network PID system.

  • PDF