• 제목/요약/키워드: tail-grouting

검색결과 10건 처리시간 0.019초

Field test and numerical study of the effect of shield tail-grouting parameters on surface settlement

  • Shao, Xiaokang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Qi, Weiqiang
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.509-522
    • /
    • 2022
  • Tail-grouting is an effective measure in shield engineering for filling the gap at the shield tail to reduce ground deformation. However, the gap-filling ratio affects the value of the gap parameters, leading to different surface settlements. It is impossible to adjust the fill ratio indiscriminately to study its effect, because the allowable adjustment range of the grouting quantity is limited to ensure construction site safety. In this study, taking the shield tunnel section between Chaoyanggang Station and Shilihe Station of Beijing Metro Line 17 as an example, the correlation between the tail-grouting parameter and the surface settlement is investigated and the optimal grouting quantity is evaluated. This site is suitable for conducting field tests to reduce the tail-grouting quantity of shield tunneling over a large range. In addition, the shield tunneling under different grouting parameters was simulated. Furthermore, we analyzed the evolution law of the surface settlement under different grouting parameters and obtained the difference in the settlement parameters for each construction stage. The results obtained indicate that the characteristics of the grout affect the development of the surface settlement. Therefore, reducing the setting time or increasing the initial strength of the grout could effectively suppress the development of surface subsidence. As the fill ratio decreases, the loose zone of the soil above the tunnel expands, and the soil deformation is easily transmitted to the surface. Meanwhile, owing to insufficient grout support, the lateral pressure on the tunnel segments is significantly reduced, and the segment moves considerably after being removed from the shield tail.

사질토 지반을 통과하는 쉴드 TBM에서 뒤채움 그라우팅이 지반 거동에 미치는 영향에 대한 수치해석적 연구 (Numerical investigation on the effect of backfill grouting on ground behavior during shield TBM tunneling in sandy ground)

  • 오주영;박현구;장석부;최항석
    • 한국터널지하공간학회 논문집
    • /
    • 제20권2호
    • /
    • pp.375-392
    • /
    • 2018
  • 쉴드 TBM 공법은 터널의 변형을 최소화할 수 있는 공법으로 도심지 얕은 터널 공사에 적합한 공법이다. 하지만 이러한 쉴드 TBM 공법의 장점에도 불구하고 침하가 발생하며, 토피가 낮은 지반에서 쉴드 TBM 굴진 중 침하에 대한 대책은 여전히 주요 쟁점사항 중 하나로 남아있다. 쉴드 TBM 공법에서 테일 보이드는 불가피하게 발생하는 공간으로 테일 보이드의 변형은 침하의 주요 원인이 된다. 이러한 테일 보이드의 변형은 뒤채움 그라우팅을 통해 제어되며, 이를 통해 침하를 억제하거나 회복시킬 수 있다고 여겨지고 있다. 하지만 실제 뒤채움 그라우팅을 통한 침하 회복은 기대하기 어려우며 특히 사질토에서 두드러진다. 이는 뒤채움 그라우팅과 사질토 지반 사이의 상호작용에 기인한 것으로 유추할 수 있다. 본 연구에서는 3차원 수치해석을 통해 사질토 지반에서 뒤채움 그라우팅이 지반거동에 미치는 영향을 파악하고자 하였다. 해석결과, 뒤채움 그라우팅은 침하증가율을 감소시켜 쉴드 TBM 굴진으로 인하 침하를 감소시키나, 그라우팅 이전에 발생한 침하를 회복시키지는 못하는 것으로 나타났다. 이는 뒤채움 그라우팅으로 인해 감소된 체적손실의 지표침하 감소 효과를 지반 내 체적변형이 상쇄하기 때문인 것으로 나타났다.

쉴드TBM터널에서 뒤채움 주입이 지반의 단기·장기 침하에 미치는 영향에 대한 수치해석적 연구 (Study on the effect of tail void grouting on the short- and long-term surface settlement in the shield TBM Tunneling using numerical analysis)

  • 오주영;박현구;김도형;장석부;이승복;최항석
    • 한국터널지하공간학회 논문집
    • /
    • 제19권2호
    • /
    • pp.265-281
    • /
    • 2017
  • 얕은 터널의 시공에 있어 지표 침하는 주요 관리 사항으로 쉴드 TBM 기술을 적용함으로써 굴착 중 지반 변형의 제어를 통하여 침하를 경감시키는 것이 가능하며, 특히 뒤채움 주입은 침하 경감의 목적으로 쉴드 공법에서는 일반적으로 적용되는 기술이다. 투수성이 낮은 지반에서의 TBM 시공에 의한 지표 침하는 터널 시공 중에 발생할 뿐만 아니라, 터널 관통 후에도 장기간에 걸쳐 발생한다. 장기 침하는 주로 터널 주변의 압밀에 의해 발생되고, 이 압밀 과정은 터널 주변에 과잉간극수압을 유발하는 뒤채움 주입에 의해 영향을 받게 되며 결과적으로 쉴드 TBM 터널에서는 뒤채움 주입이 장기 침하에 큰 영향을 주게 된다. 본 연구에서는 쉴드 TBM 공법 중 뒤채움 주입이 지표 침하에 미치는 영향을 파악하기 위해 3차원 응력-간극수압 연계해석을 수행하였다. 해석 결과 뒤채움 주입압의 증가는 단기 침하를 경감시키지만, 다수의 경우에서 장기 침하의 감소에 기여를 하지 않는 것으로 나타났다. 또한, 장기 침하를 최소한으로 제한할 수 있는 한계 주입압의 존재를 확인하였다.

Numerical evaluation of surface settlement induced by ground loss from the face and annular gap of EPB shield tunneling

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jin;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.291-300
    • /
    • 2022
  • Tunnel boring machines combined with the earth pressure balanced shield method (EPB shield TBMs) have been adopted in urban areas as they allow excavation of tunnels with limited ground deformation through continuous and repetitive excavation and support. Nevertheless, the expansion of TBM construction requires much more minor and exquisitely controlled surface settlement to prevent economic loss. Several parametric studies controlling the tunnel's geometry, ground properties, and TBM operational factors assuming ordinary conditions for EPB shield TBM excavation have been conducted, but the impact of excessive excavation on the induced settlement has not been adequately studied. This study conducted a numerical evaluation of surface settlement induced by the ground loss from face imbalance, excessive excavation, and tail void grouting. The numerical model was constructed using FLAC3D and validated by comparing its result with the field data from literature. Then, parametric studies were conducted by controlling the ground stiffness, face pressure, tail void grouting pressure, and additional volume of muck discharge. As a result, the contribution of these operational factors to the surface settlement appeared differently depending on the ground stiffness. Except for the ground stiffness as the dominant factor, the order of variation of surface settlement was investigated, and the volume of additional muck discharge was found to be the largest, followed by the face pressure and tail void grouting pressure. The results from this study are expected to contribute to the development of settlement prediction models and understanding the surface settlement behavior induced by TBM excavation.

사각(四角)제트 그라우팅 공법에 의한 지반차수 특성 (Square Jet Grouting to Reduce Permeability)

  • 곽수정;백홍렬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.188-197
    • /
    • 2005
  • Square patterned jet grouting technique is the soil improvement method that shakes the special end monitor left and right like as tail fin and mixing the soil and cement paste after cutting the soil in square shape by injecting the cement paste from installed two nozzles. The structure shape by jet grouting technique can be constructed in various shapes and sizes like as square, circle, and sector form designed by an engineer. Also, it can be constructed without waste material and reduced a construction time of work economically. In this study, the applicability of Square Jet Grouting to reduce permeability is estimated by FEM analysis and in-situ test in many cases which are various coefficient of permeability and breadth of grouting structure.

  • PDF

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements

  • Rezaei, Amir H.;Shirzehhagh, Mojtaba;Golpasand, Mohammad R. Baghban
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.153-165
    • /
    • 2019
  • A case study of monitoring and analysis of surface settlement induced by tunneling of Tabriz metro line 2 (TML2) is presented in this paper. The TML2 single tunnel has been excavated using earth pressure balanced TBM with a cutting-wheel diameter of 9.49 m since 2015. Presented measurements of surface settlements, were collected during the construction of western part of the project (between west depot and S02 station) where the tunnel was being excavated in sand and silt, below the water table and at an average axis depth of about 16 m. Settlement readings were back-analyzed using Gaussian formula, both in longitudinal and transversal directions, in order to estimate volume loss and settlement trough width factor. In addition to settlements, face support and tail grouting pressures were monitored, providing a comprehensive description of the EPB performance. Using the gap model, volume loss prediction was carried out. Also, COB empirical method for determination of the face pressure was employed in order to compare with field monitored data. Likewise, FE simulation was used in various sections employing the code Simulia ABAQUS, to investigate the efficiency of numerical modelling for the estimating of the tunneling induced-surface settlements under such a geotechnical condition. In this regard, the main aspects of a mechanized excavation were simulated. For the studied sections, numerical simulation is not capable of reproducing the high values of in-situ-measured surface settlements, applying Mohr-Coulomb constitutive law for soil. Based on results, for the mentioned case study, the range of estimated volume loss mostly varies from 0.2% to 0.7%, having an average value of 0.45%.

화강풍화대를 통과하는 슬러리 TBM의 체적손실 산정에 대한 사례 연구 (Case study of volume loss estimation during slurry tbm tunnelling in weathered zone of granite rock)

  • 박현구;오주영;장석부;이승복
    • 한국터널지하공간학회 논문집
    • /
    • 제18권1호
    • /
    • pp.61-74
    • /
    • 2016
  • 본 논문에서는 화강풍화대를 통과하는 슬러리 TBM 굴진 중 지표 침하 및 체적손실 산정에 관한 사례 연구를 수행하였다. 터널 천단 침하 계측 결과로부터 TBM 굴진 단계별 침하 발생 경향을 분석하였고, 횡방향 지표 침하 트라프로부터 굴진 중 체적손실 및 트라프 변수를 산정하였다. 또한, 체적손실 산정 모델을 이용하여 지반 특성과 굴진 중 측정된 기계데이터가 반영된 굴진 단계별 체적손실을 산정하였으며, 이를 실제 계측 결과와 비교 분석하였다. 슬러리 TBM의 경우 대부분의 지표침하는 쉴드 본체 통과 및 뒤채움 주입 이후 발생하는 것으로 나타났고 문헌에 보고된 총 체적손실 및 트라프 곡선 형태가 확인되었다. 실제 굴진 중 체적손실은 굴진 단계별로 쉴드손실 예측값의 90%, 테일부 손실 예측값의 60% 수준으로 분석되었고, 쉴드 손실에 비해 테일부 손실의 편차가 큰 것으로 나타났다.

쉴드 TBM 굴진에 따른 포화 점성토 지반의 침하거동을 고려한 한계 굴진면압과 한계 뒤채움압 (Critical face pressure and backfill pressure of shield TBM considering surface settlements of saturated clayey ground)

  • 김기석;오주영;이효범;최항석
    • 한국터널지하공간학회 논문집
    • /
    • 제20권2호
    • /
    • pp.433-452
    • /
    • 2018
  • 쉴드 TBM 공법은 터널 굴착으로 인한 터널 굴진면과 굴착면의 변형을 억제하여 지반의 변형을 최소화할 수 있는 공법이다. 이를 위해 쉴드 TBM의 운전 조건들을 적절히 제어하는 것은 매우 중요하다. 쉴드 TBM 공법의 여러 가지 운전 조건 중 굴진면압과 뒤채움주입압은 지반에 직접 압력을 가하는 과정으로 굴착에 인한 지반변위의 억제 뿐만 아니라, 지반 내 유효응력 및 간극수압의 변화에 영향을 미치는 요인이다. 굴진면압과 뒤채움압의 작용에 대한 지반의 반응은 지반의 강성 및 투수성에 따라 상이하다. 특히, 포화된 연약 점성토의 경우 굴진면압과 뒤채움압에 의한 지반 내 응력 변화의 영향이 장시간동안 잔류하므로 이에 대한 반응은 투수성이 큰 지반과 구별되는 거동을 보인다. 따라서 본 논문에서는 유한 요소법을 이용한 응력-간극수압 연계 매개변수해석을 통해 포화 점성토 지반에서 쉴드 TBM 운전 조건과 지반의 강성과 투수성이 지표침하에 미치는 영향에 대한 연구를 수행하였다. 연구 결과, 점성토 지반의 지표침하는 즉시침하와 압밀침하로 구분할 수 있었으며, 특히 압밀침하 거동은 지반의 투수성과 강성의 영향을 크게 받는 것으로 나타났다. 또한, 굴진면압과 뒤채움압의 증가가 항상 지표침하 감소로 이어지지는 않고, 임의 크기의 압력(한계 압력) 이상으로 증가된 굴진면압과 뒤채움압은 역으로 지표침하를 증가시키는 요인으로 작용할 수 있음이 확인되었다.