• Title/Summary/Keyword: taguchi design

Search Result 713, Processing Time 0.022 seconds

Influence of the Adhesive, the Adherend and the Overlap on the Single Lap Shear Strength

  • da Silva, Lucas F.M.;Ramos, J.E.;Figueiredo, M.V.;Strohaecker, T.R.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.1-9
    • /
    • 2006
  • The single lap joint is the most studied joint in the literature in terms of both theory and practice. It is easy to manufacture and the lap shear strength is a useful value for strength assessment and quality control. Simple design rules exist such as the one present in standard ASTM 1002 or in a recent paper by Adams and Davies. The main factors that have an influence on the lap shear strength are the type of adhesive, i.e. ductile or brittle, the adherend yield strength and the overlap length. The overlap increases the shear strength almost linearly if the adhesive is sufficiently ductile and the adherend does not yield. For substrates that yield, a plateau is reached for a certain value of overlap corresponding to the yielding of the adherend. For intermediate or brittle adhesives, the analysis is more complex and needs further investigation. In order to quantify the influence of the adhesive, the adherend and the overlap on the lap shear strength, the experimental design technique of Taguchi was used. An experimental matrix of 27 tests was designed and each test was repeated three times. The influence of each variable could be assessed as well as the interactions between them using the statistical software Statview. The results show that the most important variable on the lap shear strength is the overlap length followed by the type of adherend.

  • PDF

Net Shaping Process to Minimize Cutting amount of Turbocharger Control Plate (터보차저 컨트롤 플레이트의 절삭량 최소화를 위한 정형공정)

  • Yoon, Pil-Hwan;Lee, Seon-Bong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.53-61
    • /
    • 2017
  • Turbocharger is a device for increasing the power of a vehicle engine. The control plate is the main component for fixing the vane of the turbocharger. Now, the control plate is made of austenite steel cutting after the casting process. It has excellent corrosion, heat resistance and mechanical characteristics of material. However, present the process is made by cutting after casting. when cutting is processed after casting, so materials, processing time, and processing energy are lost. Therefore, this study proposes a process to powder compact use of stainless steel Deklak2 and to minimize amount of cutting through net shape process. The mechanical properties of Deklak2 were verified by tensile test, hardness test and relative density measurement, and the governed equation was defined. Also, the curvature radius 1, 2 and the density, affects the shape, were selected as the design parameters, and the best process conditions was proposed through the Taguchi method and the evaluation of SN ratio. And then prototype molds were fabricated and compared with the results of the finite element analysis for the verification, and it was found that the tendency of relative density and dimension was coincided. Therefore, it was found that the amount of cutting can be minimized by only the net shape process after the sintering process and it can be applied to mass production.

Experimental Study for the Reinforcement of District Heating Pipe (지역난방 열배관 강화를 위한 실증시험 연구)

  • Kim, Jaemin;Kim, Jooyong;Cho, Chongdu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.245-252
    • /
    • 2016
  • In this study, an alternative bend design is proposed to overcome the aging problem in piping bends. In this design, the foam pad is not included. Finite element analysis was performed based on the total pipe diameter. From this analysis, the shape of the Shear Control Ring (SCR) was determined. Temperature, stress, and other data of the proposed reinforced pipe were acquired and analyzed after the test was performed. The value of the thermal stress for the reinforced steel pipe satisfied the required standard without the foam pad based on the manufacturing of the reinforced fitting and construction site of the test. The reinforcement provided a shear strength level for the foam pad that resulted in maximum shear stress less than stress based on the original foam pad applied at the pipe bend. Additionally, an increasing factor of safety effect for the reinforced fitting application was discovered.

Numerical Analysis and Optimum Design of Disposable Drug Infuser Using Fluid-Structure Interaction Technique (유체-구조 상호작용기법을 이용한 일회용 약물주입기의 성능 해석 및 최적 설계)

  • Kim, Heon-Young;Kim, Hak-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1595-1602
    • /
    • 2010
  • A disposable drug infuser is used to provide drugs to patients who are not hospitalized; in this infuser, an elastic recovery force is exerted by a diaphragm made of a rubber-like materialsuch that a constant amount of drugs is provided to a patient. The drug infuser has to control the speed and amount of drugs to be released, as well as the overall duration for which they are to be administered. However, in a drug infuser with an elastic diaphragm, the infusion pressure depends on the amount of drug remaining within the infuser, and the amount of drug infused gradually decreases as the amount remaining in the infuser decreases. In this study, a finite element procedure involving the application of the fluid-structure interaction technique was developed and the performance of the elastic type disposable drug infuser was analyzed. The optimum design for ensuring that the infusion pressure remains constant throughout the duration of usage, including during infusion and discharge, was determined by this procedure.

Development Study of A Precooled Turbojet Engine for Flight Demonstration

  • Sato, Tetsuya;Taguchi, Hideyuki;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.109-114
    • /
    • 2008
  • This paper presents the development status of a subscale precooled turbojet engine "S-engine" for the hypersonic cruiser and space place. S-engine employs the precooled-cycle using liquid hydrogen as fuel and coolant. It has $23cm{\times}23cm$ of rectangular cross section, 2.6 m of the overall length and about 100 kg of the target weight employing composite materials for a variable-geometry rectangular air-intake and nozzle. The design thrust and specific impulse at sea-level-static(SLS) are 1.2 kN and 2,000 sec respectively. After the system design and component tests, a prototype engine made of metal was manufactured and provided for the system firing test using gaseous hydrogen in March 2007. The core engine performance could be verified in this test. The second firing test using liquid hydrogen was conducted in October 2007. The engine, fuel supplying system and control system for the next flight test were used in this test. We verified the engine start-up sequence, compressor-turbine matching and performance of system and components. A flight test of S-engine is to be conducted by the Balloon-based Operation Vehicle(BOV) at Taiki town in Hokkaido in October 2008. The vehicle is about 5 m in length, 0.55 m in diameter and 500 kg in weight. The vehicle is dropped from an altitude of 40 km by a high-altitude observation balloon. After 40 second free-fall, the vehicle pulls up and S-engine operates for 60 seconds up to Mach 2. High altitude tests of the engine components corresponding to the BOV flight condition are also conducted.

  • PDF

Study on the Optimization of Parameters for Burring Process Using 980MPa Hot-rolled Thick Sheet Metal (980MPa급 열연 후판재 버링 공정의 변수 최적화 연구)

  • Kim, S.H.;Do, D.T.;Park, J.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.291-300
    • /
    • 2021
  • Currently, starting with electric vehicles, the application of ultra-high-strength steel sheets and light metals has expanded to improve mileage by reducing vehicle weight. At a time when internal combustion engine vehicles are rapidly changing to electric vehicles, the application of ultra-high-strength steel is expanding to satisfy both weight reductions and the performance safety of the chassis parts. There is an urgent need to improve the quality of parts without defects. It is particularly difficult to estimate the part formability through the finite element method (FEM) in the burring operation, so product design has been based on the hole expansion ratio (HER) and experience. In this study, design of experiment (DOE), analysis of variance (ANOVA), and regression analysis were combined to optimize the formability by adjusting the process variables affecting the burring formability of ultra-high-strength steel parts. The optimal variables were derived by analyzing the influence of variables and the correlation between the variables through FE analysis. Finally, the optimized process parameters were verified by comparing experiment with simulation. As for the main influence of each process variable, the initial hole diameter of the piercing process and the shape height of the preforming process had the greatest effects on burring formability, while the effect of a lower round of punching in the burring process was the least. Moreover, as the diameter of the initial hole increased, the thickness reduction rate in the burring part decreased, and the final burring height increased as the shape height during preforming increased.

A Study on Design Factor of Insole using Shape Memory Alloy for Pes Planus Correction (평발교정용 형상기억합금 초탄성 인솔 설계 연구)

  • Yang, Mi Kyung;Lee, Sang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.79-85
    • /
    • 2017
  • As the number of patients suffering from Pes Planus increases, research on a correctional insole that can cope with them is increasingly required. Therefore, the design of an insole for Pes Planus Correction was studied using the superelastic effect, which is one of the characteristics of the shape memory alloy in this paper. To design an effective insole, the effect of the contact pressure induced by the insole on the plantar fascia, which is the most important muscle in the foot structure, was evaluated. Three parameters (thickness, max. height and asymmetric ratio) were set as the main design factors of the insole, and the maximum contact pressure appearing on the plantar fascia was calculated by finite element analysis and analyzed using the Taguchi method. As a result of the analysis, it was confirmed that the contact pressure was influenced in the order of max. height, thickness, and asymmetric ratio. In addition, the contact pressure was converted to a feeling pressure that could be felt by a person, and then a safety correction range was established that would not cause any irritation to the plantar fascias, even though the correction effect could be expected. This indicates the best design for the safety correction range. The design method considering the important factors established through this study can form the basis for designing a personalized correctional insole in the future.

Deduction and Verification of Optimal Factors for Stent Structure and Mechanical Reaction Using Finite Element Analysis (스텐트의 구조 및 기계적인 반응에 대한 최적인자 도출과 유한요소해석법을 통한 검증)

  • Jeon, Dong-Min;Jung, Won-Gyun;Kim, Han-Ki;Kim, Sang-Ho;Shin, Il-Gyun;Jang, Hong-Seok;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • Recently, along with technology development of endoscopic equipment, a stent has been developed for the convenience of operation, shortening of recovery times, and reduction of patient's pain. To this end, optimal factors are simulated for the stent structure and mechanical reaction and verified using finite element analysis. In order to compare to present commercialized product such as Zilver (Cook, Bloomington, Indiana, USA) and S.M.A.R.T (Cordis, Bridgewater Towsnhip, New Jersey, USA), mechanical impact factors were determined through Taguchi factor analysis, and flexibility and expandability of all the products including ours were tested using finite element analysis. Also, important factors were sought that fulfill the optimal condition using central composition method of response surface analysis, and optimal design were carried out based on the important factors. From the centra composition method of Response surface analysis, it is found that importat factors for flexibility is stent thickness (T) and unit area (W) and those for expandability is stent thickness (T). In results, important factors for optimum condition are 0.17 mm for stent thickness (T) and $0.09\;mm^2$ for unit area (W). Determined and verified by finite element analysis in out research institute, a stent was manufactured and tested with the results of better flexibility and expandability in optimal condition compared to other products. Recently, As Finite element analysis stent mechanical property assessment for research much proceed. But time and reduce expenses research rarely stent of optimum coditions. In this research, Important factor as mechanical impact factor stent Taguchi factor analysis arrangement to find flexibility with expansibility as Finite element analysis. Also, Using to Center composition method of Response surface method appropriate optimized condition searching for important factor, these considering had design optimized. Production stent time and reduce expenses was able to do the more coincide with optimum conditions. These kind of things as application plan industry of stent development period of time and reduce expenses etc. be of help to many economic development.

Optimization of Passenger Safety Restraint System for USNCAP by Response Surface Methodology (USNCAP에 대응하는 반응표면법을 이용한 조수석 안전구속장치 최적화)

  • Oh, Eun-Kyung;Lee, Ki-Sun;Son, Chang-Kyu;Kim, Dong-Seok;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2014
  • Safety performance of a new car is evaluated through USNCAP and their results in the star rating are provided to the consumers. It is very important to obtain high score of USNCAP to appeal their performance to consumers. Therefore the car companies have made the effort to improve their car safety performance. These efforts should satisfy the demand not only to get high score but also to pass the FMVSS, NHTSA regulations on safety. Huge numbers of car crash tests have been conducted on these bases by car companies. However physical tests spend too much cost and time, as an alternative way, the simulation on the car crash could be a solution to reduce the cost and time. Therefore the simulations have been widely conducted in car industry and various researches on this have been reported. In this study, restraint system had been optimized to minimize the injury of female passenger. Belted $5^{th}%ile$ female frontal crash test was selected from various test methods of USNCAP for the study. Initial velocity of the test was 56km/h. The combination injury probability of USNCAP was selected as an objective function and the injury limit value, which was defined in FMVSS, was set to an optimization constraint. Many researches that were similar to this study had been conducted, however most of them had limitation that interaction between airbag and safety belt had not been considered. Contrary to these researches, the interaction was considered in this study.

Development of a Multiobjective Optimization Algorithm Using Data Distribution Characteristics (데이터 분포특성을 이용한 다목적함수 최적화 알고리즘 개발)

  • Hwang, In-Jin;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1793-1803
    • /
    • 2010
  • The weighting method and goal programming require weighting factors or target values to obtain a Pareto optimal solution. However, it is difficult to define these parameters, and a Pareto solution is not guaranteed when the choice of the parameters is incorrect. Recently, the Mahalanobis Taguchi System (MTS) has been introduced to minimize the Mahalanobis distance (MD). However, the MTS method cannot obtain a Pareto optimal solution. We propose a function called the skewed Mahalanobis distance (SMD) to obtain a Pareto optimal solution while retaining the advantages of the MD. The SMD is a new distance scale that multiplies the skewed value of a design point by the MD. The weighting factors are automatically reflected when the SMD is calculated. The SMD always gives a unique Pareto optimal solution. To verify the efficiency of the SMD, we present two numerical examples and show that the SMD can obtain a unique Pareto optimal solution without any additional information.