• Title/Summary/Keyword: tackiness

Search Result 25, Processing Time 0.017 seconds

Effect of Zirconia Particle Addition on Curing Behavior of Phenolic Resins (Zirconia 입자의 첨가가 페놀 수지의 경화거동에 미치는 영향)

  • Yun, Jaeho;Kim, Hanjun;Lee, Jae Min;Kim, Jong Hee;Lee, Seung Goo
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.288-297
    • /
    • 2022
  • This study investigated the effect of addition of zirconia(zirconium oxide) powder on the curing behavior of phenolic resins. The heating rate controlled curing and isothermal curing behaviors of the phenol resin according to the content of the zirconia powder were analyzed. The viscosity and thermal decomposition characteristics of the phenolic resin with the zirconia content were also examind. From the DSC analysis, the degree of cure and the rate of cure were obtained. Finally, the activation energy for the cure reaction were calculated from the DSC data of the zirconia added phenolic resin. As a found, the higher the zirconia content, the longer the curing was delayed and the greater the activation energy required for curing. Additionally, the TGA result that as the content of zirconia increased, less weight loss was observed. The surface tackiness of the Carbon/Phenol prepreg was partially changed according to the zirconia content, but had no significant effect.

Variation of Adhesion Characteristics of Acryl Copolymer/Multi-functional Monomer Based PSA by UV Curing (자외선 경화에 의한 아크릴 공중합체/다관능성 단량체 복합 감압점착제의 접착특성 변화)

  • Ryu, Chong-Min;Pang, Bei-Li;Kim, Hyung-Il;Park, Ji-Won;Lee, Seung-Woo;Kim, Hyun-Jung;Kim, Kyung-Man
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.315-320
    • /
    • 2012
  • Ultra violet (UV) curable pressure sensitive adhesives (PSA) were prepared by controlling both the structure of acryl copolymer and the functionality and content of multi-functional monomers. Acryl copolymer worked as the base polymer for giving the tackiness. Multi-functional monomers were used to vary the crosslinked structure and the degree of crosslink. Acryl copolymer showed the reduced peel strength after UV curing by decreasing the content of 2-ethylhexyl acrylate in the monomer composition. Both the peel strength of PSA and the content of residue found on silicon wafer decreased after UV curing by increasing the functionality of multi-functional monomers. UV curable PSA containing 20 phr six-functional monomer showed the higher peel strength before UV curing and the lower peel strength and the least residue on silicon wafer after UV curing.

The Effects of Coupling Agent and Crosslinking Agent in the Synthesis of Acrylic Pressure Sensitive Adhesive for Polarizer Film (편광필름용 아크릴 점착제의 합성에서 커플링제와 가교제의 효과)

  • Lim, Chang-Hyuk;Ryu, Hoon;Cho, Ur-Ryong
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.319-325
    • /
    • 2009
  • The solution polymerization was conducted to synthesize pressure sensitive adhesive for polarizer film using acrylic monomers. 2-Ethylhexylacrylate, butylacrylate, acrylic acid were used as acrylic monomers. The ratio was 2-ethylliexylacrylate:butylacrylate:acrylic acid=25:50:3.6 by reflecting $-40^{\circ}C$ of glass transition temperature in the pressure sensitive adhesive. When 1 wt% of coupling agent was added to the polymerized pressure sensitive adhesive, the light transmissivity was significantly increased. This result is due to the enhancement of adhesive power against liquid crystal cell by Si-O bond of coupling agents. Cross-linking agent was added by 0.5, 1.0, and 1.5 wt% with respect to the synthesized polymer. Initial tackiness decreased, while cohesion increased with increasing crosslinking agent. In the analysis of contact angle, the increase of crosslinking agents yielded the enhancement of surface energy, resulting in the decrease of contact angle. From the measurement of heat resistance, the acrylic pressure sensitive adhesive showed excellent heat resistance regardless of change in temperature and contents in crosslinking agent. In the observation of a cutting plane, the increased crosslinking agent represented a smoother and cleaner section. Comprehensively, the optimum additive amount of crosslinking agent was determined to be 1.0 wt% to monomer.

Preparation and Properties of Water-based Adhesive Using Gemini Type Nonionic Reactive Surfactants (제미니형 비이온 반응성 계면활성제를 이용한 수성접착제의 제조 및 특성)

  • Shin, Hye-Lin;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.597-605
    • /
    • 2019
  • In order to improve the adhesion of water-based adhesive, gemini type nonionic reactive surfactants were synthesized and applied to water-based adhesives. The surfactants were synthesized by using maleic acid and polyoxyethylene cetyl ether having different length of ethylene oxide and confirmed by FT-IR and $^1H-NMR$. Their appearance was light yellow wax. The cloud point of the compound was more than $78^{\circ}C$. The measured critical micelle concentration (c.m.c) was $1.0{\times}10^{-4}{\sim}7.0{\times}10^{-4}mol/L$ and surface tension at c.m.c was 25.9~32.0 mN/m. As the number of ethylene oxide increased, the emulsifying power was improved. The foaming height of each compound by Ross-Miles method was 1.4~4.5 cm. The synthesized surfactants was then used as an emulsifier in emulsion polymerization of water-based adhesives and its physical properties were evaluated. The solid contents of prepared adhesives was 59%. The average particle size and initial tackiness of the prepared adhesives were 164~297 nm and ball no. of 20~32, respectively. The peel strength was $1.8{\sim}2.1kg_f/mm$. The retention rate of adhesives viscosity was evaluated to 99% during 30 days. Therefore, synthesized gemini type nonionic reactive surfactants are expected to be applied as an emulsifier for the high adhesive force.

Study on Physical Properties of Synthesized Water-based Tackifier According to Acrylic Monomer Structure and Content (아크릴 단량체 구조 및 조성에 따른 수계 점착부여제의 합성 및 물성 연구)

  • Kim, Se-Jin;Baek, Lan-Ji;Jeong, Boo-Young;Huh, PilHo;Cheon, JungMi;Chun, Jae-Hwan
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.25-32
    • /
    • 2022
  • There has been a growing demand for water based-type PSA due to environmental regulations for solvent-type PSA. And accordingly, there is a growing expectation as well for tackifiers used to compensate for the problem of deterioration of physical properties. Therefore, In this study, water-based tackifiers were synthesized by changing the contents of hard and functional acrylic monomers CHMA, IBOA, and AA. And these were added to the pressure-sensitive adhesive at 10 phr and their physical properties were compared. Tackiness slightly decreased as CHMA increased and IBOA decreased. Since the intermolecular bonding force increased due to the increase in AA content, the lower the AA content showed better results. Peel strength increased as the tackifiers were added because the fluidity of the polymer chain increased. And higher AA content showed better results because more hydrogen bonds were formed. The holding power tended to decrease as CHMA increased because the content of IBOA relatively decreased which has a large influence on the holding power. And higher AA content showed better results.