• Title/Summary/Keyword: tC18 Cartridge

Search Result 15, Processing Time 0.027 seconds

Facile [11C]PIB Synthesis Using an On-cartridge Methylation and Purification Showed Higher Specific Activity than Conventional Method Using Loop and High Performance Liquid Chromatography Purification (Loop와 HPLC Purification 방법보다 더 높은 비방사능을 보여주는 카트리지 Methylation과 Purification을 이용한 손쉬운 [ 11C]PIB 합성)

  • Lee, Yong-Seok;Cho, Yong-Hyun;Lee, Hong-Jae;Lee, Yun-Sang;Jeong, Jae Min
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • $[^{11}C]PIB$ synthesis has been performed by a loop-methylation and HPLC purification in our lab. However, this method is time-consuming and requires complicated systems. Thus, we developed an on-cartridge method which simplified the synthetic procedure and reduced time greatly by removing HPLC purification step. We compared 6 different cartridges and evaluated the $[^{11}C]PIB$ production yields and specific activities. $[^{11}C]MeOTf$ was synthesized by using TRACERlab FXC Pro and was transferred into the cartridge by blowing with helium gas for 3 min. To remove byproducts and impurities, cartridges were washed out by 20 mL of 30% EtOH in 0.5 M $NaH_2PO_4$ solution (pH 5.1) and 10 mL of distilled water. And then, $[^{11}C]PIB$ was eluted by 5 mL of 30% EtOH in 0.5 M $NaH_2PO_4$ into the collecting vial containing 10 mL saline. Among the 6 cartridges, only tC18 environmental cartridge could remove impurities and byproducts from $[^{11}C]PIB$ completely and showed higher specific activity than traditional HPLC purification method. This method took only 8 ~ 9 min from methylation to formulation. For the tC18 environmental cartridge and conventional HPLC loop methods, the radiochemical yields were $12.3{\pm}2.2%$ and $13.9{\pm}4.4%$, respectively, and the molar activities were $420.6{\pm}20.4GBq/{\mu}mol$ (n=3) and $78.7{\pm}39.7GBq/{\mu}mol$ (n=41), respectively. We successfully developed a facile on-cartridge methylation method for $[^{11}C]PIB$ synthesis which enabled the procedure more simple and rapid, and showed higher molar radio-activity than HPLC purification method.

The rapid synthetic strategy of [11C]PIB via disposable column cartridge purification

  • Jihye Lee;Yansheng Li;Sang-Yoon Lee;Tatsuo Ido
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.69-74
    • /
    • 2020
  • PIB is the first amyloid plaque PET image tracer reported for the first time in 2003, and is considered to be the best and is still being utilized due to its very high uptake and kinetic properties. Initially, it was synthesized by radioisotope labeling using a precursor containing a methoxy methyl protection group, but now it is synthesized using a 6-OH precursor that can be easily synthesized in one step using [11C]methyl triflate. Carbon-11 has several limitations in clinical studies using PET because its half-life is as short as 20 minutes. In this study, in order to overcome the difficulty of this half-life, a rapid method using Sep-Pak was adopted instead of HPLC purification to significantly reduce the burden of the purification process and attempted synthesis. As a result, the synthesis time was shortened by more than 50%, and the yield of the final compound was higher than the previous result and showed relatively high specific radioactivity, confirming that it is a strategic method with high applicability for various precursors having primary amines.

Consecutive automated production of carbon-11 labeled radiopharmaceuticals by sharing 11C-methylation reagent from one 11C-synthetic module

  • Park, Hyun Sik;Lee, Hong Jin;An, Hyun Ho;Moon, Byung Seok;Lee, Byung Chul;Kim, Sang Eun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.123-131
    • /
    • 2016
  • Increasing clinical demand for carbon-11 labeled radiopharmaceuticals has triggered technological advances in fields of radiochemistry and automated modules. Even though carbon-11 has a short half-life ($t_{1/2}=20.4min$), the consecutive second production of carbon-11 labeled radiopharmaceutical in one $^{11}C$-synthetic module should be delayed at least over 4 h to avoid the high radiation exposure. We herein aimed to produce two different carbon-11 labeled radiopharmaceuticals ([$^{11}C$]PIB and [$^{11}C$]methionine) by sharing of [$^{11}C$]methylation source in one $^{11}C$-synthetic module. The synthesis of $^{11}C$-labeling reagents ($[^{11}C]CH_3I$ or $[^{11}C]CH_3OTf$) is fully automated using the commercial TRACERlab $FX_{C-pro}$ module and is readily adaptable to $^{11}C$-labeling reactor for [$^{11}C$]PIB as well as another $^{11}C$-labeling apparatus for [$^{11}C$]methionine via the three-way valve. After completing the [$^{11}C$]PIB production, the re-synthesized $[^{11}C]CH_3I$ was passed through the three-way valve connected the polyetheretherketone (PEEK) line and loaded into the C18 Sep-Pak cartridge including the methionine precursor. The labeled product [^${11}C$]methionine was purified by a simple cartridge separation and reformulated into saline. The radiochemical yield of [$^{11}C$]PIB and [$^{11}C$]methionine were $5.3{\pm}0.6%$ and $18.7{\pm}0.8%$ (n.d.c.), respectively, with over 97% of radiochemical purity. The specific activity of [$^{11}C$]PIB was over $110GBq/{\mu}mol$. Total production time of two radiopharmaceuticals needs about 2 h from $1^{st}$ beam irradiation including quality control tests. Final [$^{11}C$]PIB and [$^{11}C$]methionine were satisfied all quality control test standards.

Simultaneous Determination of Tin, Nickel, Lead, Cadmium and Mercury in Cigarette Material by Solid Phase Extraction and HPLC

  • Hu, Qun;Yang, Guangyu;Ma, Jing;Liu, Jikai
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1433-1436
    • /
    • 2003
  • A new method for the simultaneous determination of heavy metal ions in cigarette material by microwave digestion and reversed-phase high-performance liquid chromatography (RP-HPLC) has been developed. The cigarette material was digested by microwave digestion. Lead, cadmium, mercury, nickel and tin ions in the digested samples were pre-column derivatized with tetra-(2-chlorophenyl)-porphyrin ($T_2$-CPP) to form color chelates, which were then enriched by solid phase extraction with a $C_{18}$ cartridge. The chelates were separated on a Waters Xterra$^{TM}RP_{18}$ column by gradient elution with methanol (containing 0.05 mol/L pyrrolidine-aceticacid buffer salt, pH = 10.0) and acetone (containin0.05 mol/L pyrrolidine-acetic acid buffer salt, pH = 10.0)as mobile phase at a flow rate of 0.5mL/min and analyzed with a photodiode array detector from 350-600 nm. The detection limits of lead, cadmium, mercury, nickel and tin were 4,3,3,8 and 5 ng/L, respectively, in the original samples. This method was afforded good results.

Study on Determination of Seven Transition Metal Ions in Water and Food by Microcolumn High-Performance Liquid Chromatography

  • Hu, Qiufen;Yang, Guangyu;Li, Haitao;Tai, Xi;Yin, Jiayuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.694-698
    • /
    • 2004
  • A new method for the simultaneous determination of seven transition metal ions in water and food by microcolumn high-performance liquid chromatography has been developed. The lead, cadmium, mercury, nickel, cobalt, silver and tin ions were pre-column derivatized with tetra-(4-aminophenyl)-porphyrin ($T_4$-APP) to form the colored chelates which were then enriched by solid phase extraction with $C_{18}$ cartridge. The enrichment factor of 50 was achieved by eluted the retained chelates from the cartridge with tetrahydrofuran (THF). The chelates were separated on a ZORBAX Stable Bound microcolumn ($2.0{\times}50\;mm,\;1.8\;{\mu}m$)with methanol-tetrahydrofuran (95 : 5, v/v, containing 0.05 mol/L pyrrolidine-acetic acid buffer salt, pH = 10.0) as mobile phase at a flow rate of 0.5 mL/min and detected with a photodiode array detector from 350-600 nm. The seven chelates were separated completely within 2.0 min. The detection limits of lead, cadmium, mercury, nickel, cobalt, silver and tin are 4 ng/L, 3 ng/L, 6 ng/L, 5 ng/L, 5 ng/L, 6 ng/L, 4 ng/L respectively in the original samples. This method was applied to the determination of the seven transition metal in water and food samples with good results.

LC-MS Determination and Bioavailability Study of Imidapril Hydrochloride after the Oral Administration of Imidapril Tablets in Human Volunteers

  • Yun Ji Hye;Myung Ja Hye;Kim Hye Jin;Lee Sibeum;Park Jong-Sei;Kim Won;Lee Eun-Hee;Moon Cheol Jin;Hwang Sung-Joo
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.463-468
    • /
    • 2005
  • The purpose of the present study was to develop a standard protocol for imidapril hydrochloride bioequivalence testing. For this reason, a specific LC-MS method was developed and validated for the determination of imidapril in human plasma. A solid-phase extraction cartridge, $Sep-pak^{R}$ C18, was used to extract imidapril and ramipril (an internal standard) from deproteinized plasma. The compounds were separated using a XTerra $MS^{R}$?C18 column ($3.5 {\mu}m, 2.1\times150 mm$) and $acetonitrile-0.1\%$ formic acid (67:33, v/v) adjusted to pH 2.4 by 2 mmol/L ammonium formic acid, as mobile phase at 0.3 mL/min. Imidapril was detected as m/z 406 at a retention time of ca. 2.3 min, and ramipril as m/z 417 at ca. 3.6 min. The described method showed acceptable specificity, linearity from 0.5 to 100 ng/mL, precision (expressed as a relative standard deviation of less than $15\%$), accuracy, and stability. The plasma concentration-versus-time curves of eight healthy male volunteers administered a single dose of imidapril (10 mg), gave an $AUC_{12hr}$ of imidapril of $121.48\pm35.81 ng mL^{-1} h$, and $C_{max} and T_{max}$ values of $32.59\pm9.76 ng/mL and 1.75\pm0.27 h$. The developed method should be useful for the determination of imidapril in plasma with sufficient sensitivity and specificity in bioequivalence study.

Development of Radiosynthetic Methods of 18F-THK5351 for tau PET Imaging (타우 PET영상을 위한 18F-THK5351의 표지방법 개발)

  • Park, Jun-Young;Son, Jeong-Min;Chun, Joong-Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.51-54
    • /
    • 2018
  • Purpose $^{18}F-THK5351$ is the newly developed PET probe for tau imaging in alzheimer's disease. The purpose of study was to establish the automated production of $^{18}F-THK5351$ on a commercial module. Materials and Methods Two different approaches were evaluated for the synthesis of $^{18}F-THK5351$. The first approach (method I) included the nucleophilic $^{18}F$-fluorination of the tosylate precursor, subsequently followed by pre-HPLC purification of crude reaction mixture with SPE cartridge. In the second approach (method II), the crude reaction mixture was directly introduced to a semi-preparative HPLC without SPE purification. The radiosynthesis of $^{18}F-THK5351$ was performed on a commercial GE $TRACERlab^{TM}$ $FX-_{FN}$ module. Quality control of $^{18}F-THK5351$ was carried out to meet the criteria guidelined in USP for PET radiopharmaceuticals. Results The overall radiochemical yield of method I was $23.8{\pm}1.9%$ (n=4) as the decay-corrected yield (end of synthesis, EOS) and the total synthesis time was $75{\pm}3min$. The radiochemical yield of method II was $31.9{\pm}6.7%$ (decay-corrected, n=10) and the total preparation time was $70{\pm}2min$. The radiochemical purity was>98%. Conclusion This study shows that method II provides higher radiochemical yield and shorter production time compared to the pre-SPE purification described in method I. The $^{18}F-THK5351$ synthesis by method II will be ideal for routine clinical application, considering short physical half-life of fluorine-18 ($t_{1/2}=110min$).

Purification of Antibacterial Peptide from the Skin of the Catfish Silurus asotus (메기의 껍질로부터 항균성 펩타이드의 정제)

  • Sohn, Hee-Young;Go, Hye-Jin;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.296-301
    • /
    • 2016
  • An antibacterial peptide from skin extract of the catfish Silurus asotus was purified and characterized. The acidified skin extract was put through a Sep-Pak C18 solid phase extraction cartridge using a stepwise gradient and divided into flow-through (F.T.), 10% methanol-elute (RM10), 60% methanolelute (RM60), and 100% methanol-elute (RM100) fractions. RM10, RM60, and RM 100 showed antimicrobial activity against Escherichia coli D31. On the other hand, the F.T. fraction did not show antimicrobial activity. Among the various fractions, RM 60 had the highest activity. RM 60 was partially purified on a cation exchange column (CM52) by a stepwise gradient. The ammonium acetate (pH 5.15) 0.02 M – 0.8 M fraction showed antimicrobial activity. Then an antimicrobial peptide was purified using a 0.6M fraction with strong antibacterial activity through a series of five C18 reversed-phase HPLC columns. For the characterization of the purified peptide, the molecular weight and amino acid sequence were analyzed by MALDI-TOF MS and Edman degradation. The molecular weight of this peptide was about 4182.1 [M+H]+. The amino acid sequence of this peptide was partially determined as follows: PALXXKARREAKVKF. These findings suggest that this peptide plays a significant role in the innate defense system of catfish skin.

Synthesis and Biodistribution of Flumazenil Derivative [F-18](3-(2-Fluoro) flumazenil for Imaging Benzodiazepine Receptor (벤조디아제핀 수용체 영상용 양전자 방출 핵종 표지 플루마제닐 유도체 [F-18](3-(2-Fluoro)flumazenil의 합성과 생체 내 분포)

  • Hong, Sung-Hyun;Jeong, Jae-Min;Chang, Young-Soo;Lee, Dong-Soo;Chung, June-Key;Cho, Jung-Hyuck;Lee, Sook-Ja;Kang, Sam-Sik;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.6
    • /
    • pp.527-536
    • /
    • 1999
  • Purpose: Radiotracers that bind to the central benzodiazepine receptor are useful for the investigation of various neurological and psychiatric diseases. [C-11]Flumazenil, a benzodiazepine antagonist, is the most widely used radioligand for central benzodiazepine receptor imaging by PET. We synthesized 3-(2-[F-18]fluoro)flumazenil, a new fluorine-18 ($t_{1/2}$= 110 min) labeled analogue of benzodiazepine receptor imaging agent, and evaluated in vivo for biodistribution in mice. Materials and Methods: Flumazenil (Ro 15-1788) was synthesized by a modification of the reported method. Precursor of 3-(2-[F-18]fluoro)flumazenil, the tosylated flumazenil derivative was prepared by the tosylation of the ethyl ester by ditosylethane. [F-18] labeling of tosyl substitued flumazenil precursor was performed by adding F-18 ion at $85^{\circ}C$ in the hot ceil for 20 min. The reaction mixture was trapped by C18 cartridge, washed with 10% ethanol, and eluted by 40% ethanol. Bidistribution in mice was determined after intravenous injection. Results: The total chemical yield of tosylated flumazenil derivative was ${\sim}40%$. The efficiency of labeling 3-(2-[F-18]fluoro)flumazenil was 66% with a total synthesis time of 50 min. Brain uptakes of 3-(2-[F-18]fluoro)flumazenil at 10, 30, 60 min after injection, were $2.5{\pm}0.37,\;2.2{\pm}0.26,\;2.1{\pm}0.11$ and blood activities were $3.7{\pm}0.43,\;3.3{\pm}0.07,\;3.3{\pm}0.09%ID/g$, respectively. Conclusion: We synthesized a tosylated flumazenil derivative which was successfully labeled with no-carrier-added F-18 by nucleophilic substitution.

  • PDF

Ion chromatographic determination of chlorite and chlorate in chlorinated food using a hydroxide eluent

  • Kim, Dasom;Jung, Sungjin;Lee, Gunyoung;Yun, Sang Soon;Lim, Ho Soo;Kim, Hekap
    • Analytical Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.57-67
    • /
    • 2017
  • This study was conducted to develop an analytical technique for determination of chlorite and chlorate concentrations in fresh-cut food and dried fish products by an ion chromatography/conductivity detection method using a hydroxide mobile phase. Deionized water was added to homogenized samples, which were then extracted by ultrasound extraction and centrifuged at high speed (8,500 rpm). Subsequently, a Sep-Pak tC18 cartridge was used to purify the supernatant. Chlorite and chlorate ions were separated using 20 mM KOH solution as the mobile phase and Dionex IonPac AS27 column as the stationary phase. Ethylenediamine was used as sample preservative and dibromoacetate was added to adjust for the disparity in extraction efficiencies between the food samples. The method detection limit) for chlorite and chlorate were estimated to be 0.2 mg/kg and 0.1 mg/kg, respectively, and the coefficient of determination ($r^2$) that denotes the linearity of their calibration curves were correspondingly measured to be 0.9973 and 0.9987. The recovery rate for each ion was 92.1 % and 96.3 %, with relative standard deviations of 7.47 % and 6.18 %, respectively. Although neither chlorite nor chlorate was detected in the food samples, the analytical technique developed in this study may potentially be used in the analysis of disinfected food products.