• 제목/요약/키워드: t-cinnamaldehyde

검색결과 5건 처리시간 0.022초

$^1H-NMR$을 이용한 계피의 t-cinnamaldehyde 정량분석 (Quantitative Analysis of t-Cinnamaldehyde of Cinnamomum cassia by $^1H-NMR$ Spectrometry)

  • 송명종;유종수;백남인
    • Applied Biological Chemistry
    • /
    • 제48권3호
    • /
    • pp.267-272
    • /
    • 2005
  • 계피(계지, Cinnanmomum cassia)의 주요성분인, trans-cinnamaldehyde를 $^1H-NMR$ 분광법을 이용하여 정량분석하였다. 핵자기 공명법을 이용한 정량분석의 응용가능성을 확인하기 위하여, t-cinnamaldehyde의 $^1H-NMR$ 스펙트럼에서 시료의 농도와 측정온도를 변화시킴에 따라 chemical shift의 변화와 적분값의 변화를 관찰하였다. t-Cinnamaldehyde(7.1429 mg/ml)를 19, 25, 30, 40 및 $50^{\circ}C$ 하에서 $^1H-NMR$ 측정한 결과, aldehyde methine signal(doublet)의 chemical shift가 9.7202, 9.7184, 9.7169, 9.7142 및 9.7124 ppm에서 관측되었다. 이는 측정온도는 signal의 chemical shift의 변화에 중요한 변수가 되지 않는다는 것을 의미하였다. 또한, aldehyde signal의 적분값이 $1.37(19^{\circ}C),\;1.37(25^{\circ}C),\;1.37(30^{\circ}C),\;1.37(40^{\circ}C)$$1.37(50^{\circ}C)$로써, 측정온도가 signal의 적분값에는 전혀 영향을 미치지 않는 것으로 나타났다. 동일한 온도 $25^{\circ}C$에서 0.4464, 0.8929, 1.7857, 3.5714, 7.1429 및 14.286 mg/ml의 농도의 시료에 대한 $^1H-NMR$ 측정 결과, aldehyde기의 chemical shifts는 각각 9.7206, 9.7201, 9.7196, 9.7192, 9.7185 및 9.7174 ppm에서 나타났다. 이는 각 시료의 농도가 증가함에 따라서 aldehyde의 signal이 고자장으로 약간 이동하는 것으로 나타났다. Aldehyde기의 doublet methine signal의 적분값과 각 시료의 농도에 따른 calibration curve는 직선으로 나타났으며, 매우 높은 회귀율($r^2=1.0000$)을 보였다. t-Cinnamaldehyde와 aldehyde기를 갖는 물질로써, C. cassia의 또 다른 구성성분인 t-2-methoxycinnamaldehyde($7.1429\;mg/ml\;CDCl_3,\;25^{\circ}C$)에 대해서, $^1H-NMR$ 스펙트럼을 측정한 결과, t-cinnamaldehyde는 ${\delta}_H$ 9.7174(9.7078, 9.7270)서 관측되었다. t-2-Methoxycinnamaldehyde는 ${\delta}_H$ 9.6936(9.6839, 9.7032)에서 관측되었다. 따라서, 두 화합물의 chemical shift의 차이는 resolution 값이 0.45 Hz인 NMR 스펙트럼 상에서 충분히 구분할 수 있을 정도로 나타났다. 위의 방법을 이용하여, 추출용매에 따른 C. cassia 내의 t-cinnamaldehyde의 함량을 분석한 결과, n-hexane, $CHCl_3$ 및 EtOAc로 추출하였을 때에, 각각 94.2 mg/g(0.94%), 137.6 mg/g(1.38%), 140.1 mg/g(1.40%)으로 결정되었다.

Involvement of TRPA1 in the cinnamaldehyde-induced pulpal blood flow change in the feline dental pulp

  • Kim, Dokyung;Lee, Moon-Hwan;Kim, Sung Kyo
    • Restorative Dentistry and Endodontics
    • /
    • 제41권3호
    • /
    • pp.202-209
    • /
    • 2016
  • Objectives: The purpose of this study was to investigate the involvement of TRPA1 in the cinnamaldehyde-induced pulpal blood flow (PBF) change in the feline dental pulp. Materials and Methods: Mandibles of eight cats were immobilized and PBF was monitored with a laser Doppler flowmetry at the mandibular canine tooth. To evaluate the effect of cinnamaldehyde on PBF, cinnamaldehyde was injected into the pulp through the lingual artery at a constant rate for 60 seconds. As a control, a mixture of 70% ethanol and 30% dimethyl sulfoxide (DMSO, vehicle) was used. To evaluate the involvement of transient receptor potential ankyrin 1 (TRPA1) in PBF change, AP18, a specific TRPA1 antagonist, was applied into the pulp through the Class V dentinal cavity followed by cinnamaldehyde-administration 3 minutes later. The paired variables of experimental data were statistically analyzed using paired t-test. A p value of less than 0.05 was considered as statistically significant. Results: Administration of cinnamaldehyde (0.5 mg/kg, intra-arterial [i.a.]) induced significant increases in PBF (p < 0.05). While administration of a TRPA1 antagonist, AP18 (2.5 - 3.0 mM, into the dentinal cavity [i.c.]) caused insignificant change of PBF (p > 0.05), administration of cinnamaldehyde (0.5 mg/kg, i.a.) following the application of AP18 (2.5 - 3.0 mM, i.c.) resulted in an attenuation of PBF increase from the control level (p < 0.05). As a result, a TRPA1 antagonist, AP18 effectively inhibited the vasodilative effect of cinnamaldehyde (p < 0.05). Conclusions: The result of the present study provided a functional evidence that TRPA1 is involved in the mechanism of cinnamaldehyde-induced vasodilation in the feline dental pulp.

Immunomodulatory effects of phytogenics in chickens and pigs - A review

  • Huang, C.M.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권5호
    • /
    • pp.617-627
    • /
    • 2018
  • Environmental stressors like pathogens and toxins may depress the animal immune system through invasion of the gastrointestinal tract (GIT) tract, where they may impair performance and production, as well as lead to increased mortality rates. Therefore, protection of the GIT tract and improving animal health are top priorities in animal production. Being natural-sourced materials, phytochemicals are potential feed additives possessing multiple functions, including: anti-inflammatory, anti-fungal, anti-viral and antioxidative properties. This paper focuses on immunity-related physiological parameters regulated by phytochemicals, such as carvacrol, cinnamaldehyde, curcumin, and thymol; many studies have proven that these phytochemicals can improve animal performance and production. On the molecular level, the impact of inflammatory gene expression on underlying mechanisms was also examined, as were the effects of environmental stimuli and phytochemicals in initiating nuclear factor kappa B and mitogen-activated protein kinases signaling pathways and improving health conditions.

Isolation of the ppar-${\gamma}$ ligands from the stem of the Zanthoxylum Schinifolium and their structure activity relationships

  • Nam, Jeong-Bum;Lee, Jeong-Hyung;Kim, Young-Ho;Lee, Jung-Joon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.380.2-380.2
    • /
    • 2002
  • Peroxisome proliferator-activated receptor (PPAR)-$\gamma$ is a nuclear hormone receptor family that plays an important role in the transcriptional regulation of genes in cellular lipid and energy metabolism. In our search for Iigands for PPAR-$\gamma$ from natural resources. two phenylpropanoids. 3.4.5-Trimethoxy cinnamylalcohol (1) and 3.4.5- Trimethoxy cinnamaldehyde (2). were isolated as PPAR-$\gamma$ agonists from the MeOH extracts of Zanthoxylum schinifolium Sieb. & ZUCCo (Rutaceae) by activity-guided fractionation. These two compoundS bind and activated PPAR-$\gamma$ transcriptional activity in a dose dependent manner assessed by ligand-binding assay. While the maximum activities for PPAR-$\gamma$ of these compounds were comparable with that of rosiglitazone. which is currently used in the treatment of Type II diabetes. the potency of these compounds were much weaker than rosiglitazone ($ED_{50}$=t.2$\mu\textrm{M}$) with the $ED_{50}$ values of 9.08 and 4.08 $\mu\textrm{M}$. respectively. To examine the structure-activity relationship of phenylpropanoids. we prepared several phenylpropanoid derivatives and measured the activity. We observed that substituents at 4'- position could playa key role in determining the potency for PPAR-$\gamma$ agonistic activity .

  • PDF