• Title/Summary/Keyword: t-cinnamaldehyde

Search Result 5, Processing Time 0.023 seconds

Quantitative Analysis of t-Cinnamaldehyde of Cinnamomum cassia by $^1H-NMR$ Spectrometry ($^1H-NMR$을 이용한 계피의 t-cinnamaldehyde 정량분석)

  • Song, Myoung-Chong;Yoo, Jong-Su;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.267-272
    • /
    • 2005
  • trans-Cinnamaldehyde, a major component of Cinnamomum cassia, was quantitatively analyzed using the $^1H-NMR$ spectrometry. Applicability of this method was confirmed through observing the variation of chemical shift in the $^1H-NMR$ spectrum of t-cinnamaldehyde and the integration value according to various sample concentrations or running temperatures. When the $^1H-NMR$ spectrometry was run for t-cinnamaldehyde (7.1429 mg/ml) at 19, 25, 30, 40 and $50^{\circ}C$, the chemical shifts of the doublet methine signal due to an aldehyde group were observed at 9.7202, 9.7184, 9.7169, 9.7142 and 9.7124 ppm, respectively, to imply that the running temperature had no significant variation in the chemical shift of the signal. The integration values of the signal were $1.37\;(19^{\circ}C),\;1.37\;(25^{\circ}C),\;1.37\;(30^{\circ}C),\;1.37(40^{\circ}C)$ and $1.37(50^{\circ}C)$, respectively, to also indicate running temperature gave no effect on the integration value. When the sample solutions with various concentrations such as 0.4464, 0.8929, 1.7857, 3.5714, 7.1429 and 14.286 mg/ml were respectively measured for the $^1H-NMR$ at $25^{\circ}C$, the chemical shifts of the aldehyde group were observed at 9.7206, 9.7201, 9.7196, 9.7192, 9.7185 and 9.7174 ppm. Even though the signal was slightly shifted to the high field in proportion to the increase of sample concentration, the alteration was not significant enough to applicate this method. The calibration curve for integration values of the doublet methine signal due to the aldehyde group vs the sample concentration was linear and showed very high regression rate ($r^2=1.0000$). Meantime, the $^1H-NMR$ spectra (7.1429 mg/ml $CDCl_3,\;25^{\circ}C$) of t-cinnamaldehyde and t-2-methoxycinnamaldehyde, another constituent of Cinnamomum cassia, showed the chemical shifts of the aldehyde group as ${\delta}_H$ 9.7174 (9.7078, 9.7270) for the former compound and ${\delta}_H$ 9.6936 (9.6839, 9.7032) for the latter one. The difference of the chemical shift between two compounds was big enough to be distinguished using the NMR spectrometer with 0.45 Hz of resolution. The contents of cinnamaldehyde in Cinnamomum cassia, which were respectively extracted with n-hexane, $CHCl_3$, and EtOAc, were determiend as 94.2 \;mg/g (0.94%), 137.6 mg/g (1.38%) and 140.1 mg/g(1.40%) t-cinnamaldehyde in each extract, respectively, by using the above method.

Involvement of TRPA1 in the cinnamaldehyde-induced pulpal blood flow change in the feline dental pulp

  • Kim, Dokyung;Lee, Moon-Hwan;Kim, Sung Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.3
    • /
    • pp.202-209
    • /
    • 2016
  • Objectives: The purpose of this study was to investigate the involvement of TRPA1 in the cinnamaldehyde-induced pulpal blood flow (PBF) change in the feline dental pulp. Materials and Methods: Mandibles of eight cats were immobilized and PBF was monitored with a laser Doppler flowmetry at the mandibular canine tooth. To evaluate the effect of cinnamaldehyde on PBF, cinnamaldehyde was injected into the pulp through the lingual artery at a constant rate for 60 seconds. As a control, a mixture of 70% ethanol and 30% dimethyl sulfoxide (DMSO, vehicle) was used. To evaluate the involvement of transient receptor potential ankyrin 1 (TRPA1) in PBF change, AP18, a specific TRPA1 antagonist, was applied into the pulp through the Class V dentinal cavity followed by cinnamaldehyde-administration 3 minutes later. The paired variables of experimental data were statistically analyzed using paired t-test. A p value of less than 0.05 was considered as statistically significant. Results: Administration of cinnamaldehyde (0.5 mg/kg, intra-arterial [i.a.]) induced significant increases in PBF (p < 0.05). While administration of a TRPA1 antagonist, AP18 (2.5 - 3.0 mM, into the dentinal cavity [i.c.]) caused insignificant change of PBF (p > 0.05), administration of cinnamaldehyde (0.5 mg/kg, i.a.) following the application of AP18 (2.5 - 3.0 mM, i.c.) resulted in an attenuation of PBF increase from the control level (p < 0.05). As a result, a TRPA1 antagonist, AP18 effectively inhibited the vasodilative effect of cinnamaldehyde (p < 0.05). Conclusions: The result of the present study provided a functional evidence that TRPA1 is involved in the mechanism of cinnamaldehyde-induced vasodilation in the feline dental pulp.

Immunomodulatory effects of phytogenics in chickens and pigs - A review

  • Huang, C.M.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.617-627
    • /
    • 2018
  • Environmental stressors like pathogens and toxins may depress the animal immune system through invasion of the gastrointestinal tract (GIT) tract, where they may impair performance and production, as well as lead to increased mortality rates. Therefore, protection of the GIT tract and improving animal health are top priorities in animal production. Being natural-sourced materials, phytochemicals are potential feed additives possessing multiple functions, including: anti-inflammatory, anti-fungal, anti-viral and antioxidative properties. This paper focuses on immunity-related physiological parameters regulated by phytochemicals, such as carvacrol, cinnamaldehyde, curcumin, and thymol; many studies have proven that these phytochemicals can improve animal performance and production. On the molecular level, the impact of inflammatory gene expression on underlying mechanisms was also examined, as were the effects of environmental stimuli and phytochemicals in initiating nuclear factor kappa B and mitogen-activated protein kinases signaling pathways and improving health conditions.

Isolation of the ppar-${\gamma}$ ligands from the stem of the Zanthoxylum Schinifolium and their structure activity relationships

  • Nam, Jeong-Bum;Lee, Jeong-Hyung;Kim, Young-Ho;Lee, Jung-Joon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.380.2-380.2
    • /
    • 2002
  • Peroxisome proliferator-activated receptor (PPAR)-$\gamma$ is a nuclear hormone receptor family that plays an important role in the transcriptional regulation of genes in cellular lipid and energy metabolism. In our search for Iigands for PPAR-$\gamma$ from natural resources. two phenylpropanoids. 3.4.5-Trimethoxy cinnamylalcohol (1) and 3.4.5- Trimethoxy cinnamaldehyde (2). were isolated as PPAR-$\gamma$ agonists from the MeOH extracts of Zanthoxylum schinifolium Sieb. & ZUCCo (Rutaceae) by activity-guided fractionation. These two compoundS bind and activated PPAR-$\gamma$ transcriptional activity in a dose dependent manner assessed by ligand-binding assay. While the maximum activities for PPAR-$\gamma$ of these compounds were comparable with that of rosiglitazone. which is currently used in the treatment of Type II diabetes. the potency of these compounds were much weaker than rosiglitazone ($ED_{50}$=t.2$\mu\textrm{M}$) with the $ED_{50}$ values of 9.08 and 4.08 $\mu\textrm{M}$. respectively. To examine the structure-activity relationship of phenylpropanoids. we prepared several phenylpropanoid derivatives and measured the activity. We observed that substituents at 4'- position could playa key role in determining the potency for PPAR-$\gamma$ agonistic activity .

  • PDF