• Title/Summary/Keyword: systems

Search Result 114,265, Processing Time 0.114 seconds

Membership Fluidity and Knowledge Collaboration in Virtual Communities: A Multilateral Approach to Membership Fluidity (가상 커뮤니티의 멤버 유동성과 지식 협업: 멤버 유동성에 대한 다각적 접근)

  • Park, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.19-47
    • /
    • 2015
  • In this era of knowledge economy, a variety of virtual communities are proliferating for the purpose of knowledge creation and utilization. Since the voluntary contributions of members are the essential source of knowledge, member turnover can have significant implications on the survival and success of virtual communities. However, there is a dearth of research on the effect of membership turnover and even the method of measurement for membership turnover is left unclear in virtual communities. In a traditional context, membership turnover is calculated as the ratio of the number of departing members to the average number of members for a given time period. In virtual communities, while the influx of newcomers can be clearly measured, the magnitude of departure is elusive since explicit withdrawals are seldom executed. In addition, there doesn't exist a common way to determine the average number of community members who return and contribute intermittently at will. This study initially examines the limitations in applying the concept of traditional turnover to virtual communities, and proposes five membership fluidity measures based on a preliminary analysis of editing behaviors of 2,978 featured articles in English Wikipedia. Subsequently, this work investigates the relationships between three selected membership fluidity measures and group collaboration performance, reflecting a moderating effect dependent on work characteristic. We obtained the following results: First, membership turnover relates to collaboration efficiency in a right-shortened U-shaped manner, with a moderating effect from work characteristic; given the same turnover rate, the promotion likelihood for a more professional task is lower than that for a less professional task, and the likelihood difference diminishes as the turnover rate increases. Second, contribution period relates to collaboration efficiency in a left-shortened U-shaped manner, with a moderating effect from work characteristic; the marginal performance change per unit change of contribution period is greater for a less professional task. Third, the number of new participants per month relates to collaboration efficiency in a left-shortened reversed U-shaped manner, for which the moderating effect from work characteristic appears to be insignificant.

Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

  • An, Jungkook;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.49-67
    • /
    • 2015
  • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.

Exploratory Case Study for Key Successful Factors of Producy Service System (Product-Service System(PSS) 성공과 실패요인에 관한 탐색적 사례 연구)

  • Park, A-Rum;Jin, Dong-Su;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.255-277
    • /
    • 2011
  • Product Service System(PSS), which is an integrated combination of product and service, provides new value to customer and makes companies sustainable as well. The objective of this paper draws Critical Successful Factors(CSF) of PSS through multiple case study. First, we review various concepts and types in PSS and Platform business literature currently available on this topic. Second, after investigating various cases with the characteristics of PSS and platform business, we select four cases of 'iPod of Apple', 'Kindle of Amazon', 'Zune of Microsoft', and 'e-book reader of Sony'. Then, the four cases are categorized as successful and failed cases according to criteria of case selection and PSS classification. We consider two methodologies for the case selection, i.e., 'Strategies for the Selection of Samples and Cases' proposed by Bent(2006) and the seven case selection procedures proposed by Jason and John(2008). For case selection, 'Stratified sample and Paradigmatic cases' is adopted as one of several options for sampling. Then, we use the seven case selection procedures such as 'typical', 'diverse', 'extreme', 'deviant', 'influential', 'most-similar', and 'mostdifferent' and among them only three procedures of 'diverse', 'most?similar', and 'most-different' are applied for the case selection. For PSS classification, the eight PSS types, suggested by Tukker(2004), of 'product related', 'advice and consulancy', 'product lease', 'product renting/sharing', 'product pooling', 'activity management', 'pay per service unit', 'functional result' are utilized. We categorize the four selected cases as a product oriented group because the cases not only sell a product, but also offer service needed during the use phase of the product. Then, we analyze the four cases by using cross-case pattern that Eisenhardt(1991) suggested. Eisenhardt(1991) argued that three processes are required for avoiding reaching premature or even false conclusion. The fist step includes selecting categories of dimensions and finding within-group similarities coupled with intergroup difference. In the second process, pairs of cases are selected and listed. The second step forces researchers to find the subtle similarities and differences between cases. The third process is to divide the data by data source. The result of cross-case pattern indicates that the similarities of iPod and Kindle as successful cases are convenient user interface, successful plarform strategy, and rich contents. The differences between the successful cases are that, wheares iPod has been recognized as the culture code, Kindle has implemented a low price as its main strategy. Meanwhile, the similarities of Zune and PRS series as failed cases are lack of sufficient applications and contents. The differences between the failed cases are that, wheares Zune adopted an undifferentiated strategy, PRS series conducted high-price strategy. From the analysis of the cases, we generate three hypotheses. The first hypothesis assumes that a successful PSS system requires convenient user interface. The second hypothesis assumes that a successful PSS system requires a reciprocal(win/win) business model. The third hypothesis assumes that a successful PSS system requires sufficient quantities of applications and contents. To verify the hypotheses, we uses the cross-matching (or pattern matching) methodology. The methodology matches three key words (user interface, reciprocal business model, contents) of the hypotheses to the previous papers related to PSS, digital contents, and Information System (IS). Finally, this paper suggests the three implications from analyzed results. A successful PSS system needs to provide differentiated value for customers such as convenient user interface, e.g., the simple design of iTunes (iPod) and the provision of connection to Kindle Store without any charge. A successful PSS system also requires a mutually benefitable business model as Apple and Amazon implement a policy that provides a reasonable proft sharing for third party. A successful PSS system requires sufficient quantities of applications and contents.

A Study on the Design of Case-based Reasoning Office Knowledge Recommender System for Office Professionals (사례기반추론을 이용한 사무지식 추천시스템)

  • Kim, Myong-Ok;Na, Jung-Ah
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.131-146
    • /
    • 2011
  • It is becoming more essential than ever for office professionals to become competent in information collection/gathering and problem solving in today's global business society. In particular, office professionals do not only assist simple chores but are also forced to make decisions as quickly and efficiently as possible in problematic situations that can end in either profit or loss to their company. Since office professionals rely heavily on their tacit knowledge to solve problems that arise in everyday business situations, it is truly helpful and efficient to refer to similar business cases from the past and share or reuse such previous business knowledge for better performance results. Case-based reasoning(CBR) is a problem-solving method which utilizes previous similar cases to solve problems. Through CBR, the closest case to the current business situation can be searched and retrieved from the case or knowledge base and can be referred to for a new solution. This reduces the time and resources needed and increase success probability. The main purpose of this study is to design a system called COKRS(Case-based reasoning Office Knowledge Recommender System) and develop a prototype for it. COKRS manages cases and their meta data, accepts key words from the user and searches the casebase for the most similar past case to the input keyword, and communicates with users to collect information about the quality of the case provided and continuously apply the information to update values on the similarity table. Core concepts like system architecture, definition of a case, meta database, similarity table have been introduced, and also an algorithm to retrieve all similar cases from past work history has also been proposed. In this research, a case is best defined as a work experience in office administration. However, defining a case in office administration was not an easy task in reality. We surveyed 10 office professionals in order to get an idea of how to define a case in office administration and found out that in most cases any type of office work is to be recorded digitally and/or non-digitally. Therefore, we have defined a record or document case as for COKRS. Similarity table was composed of items of the result of job analysis for office professionals conducted in a previous research. Values between items of the similarity table were initially set to those from researchers' experiences and literature review. The results of this study could also be utilized in other areas of business for knowledge sharing wherever it is necessary and beneficial to share and learn from past experiences. We expect this research to be a reference for researchers and developers who are in this area or interested in office knowledge recommendation system based on CBR. Focus group interview(FGI) was conducted with ten administrative assistants carefully selected from various areas of business. They were given a chance to try out COKRS in an actual work setting and make some suggestions for future improvement. FGI has identified the user-interface for saving and searching cases for keywords as the most positive aspect of COKRS, and has identified the most urgently needed improvement as transforming tacit knowledge and knowhow into recorded documents more efficiently. Also, the focus group has mentioned that it is essential to secure enough support, encouragement, and reward from the company and promote positive attitude and atmosphere for knowledge sharing for everybody's benefit in the company.

Keyword Network Analysis for Technology Forecasting (기술예측을 위한 특허 키워드 네트워크 분석)

  • Choi, Jin-Ho;Kim, Hee-Su;Im, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.227-240
    • /
    • 2011
  • New concepts and ideas often result from extensive recombination of existing concepts or ideas. Both researchers and developers build on existing concepts and ideas in published papers or registered patents to develop new theories and technologies that in turn serve as a basis for further development. As the importance of patent increases, so does that of patent analysis. Patent analysis is largely divided into network-based and keyword-based analyses. The former lacks its ability to analyze information technology in details while the letter is unable to identify the relationship between such technologies. In order to overcome the limitations of network-based and keyword-based analyses, this study, which blends those two methods, suggests the keyword network based analysis methodology. In this study, we collected significant technology information in each patent that is related to Light Emitting Diode (LED) through text mining, built a keyword network, and then executed a community network analysis on the collected data. The results of analysis are as the following. First, the patent keyword network indicated very low density and exceptionally high clustering coefficient. Technically, density is obtained by dividing the number of ties in a network by the number of all possible ties. The value ranges between 0 and 1, with higher values indicating denser networks and lower values indicating sparser networks. In real-world networks, the density varies depending on the size of a network; increasing the size of a network generally leads to a decrease in the density. The clustering coefficient is a network-level measure that illustrates the tendency of nodes to cluster in densely interconnected modules. This measure is to show the small-world property in which a network can be highly clustered even though it has a small average distance between nodes in spite of the large number of nodes. Therefore, high density in patent keyword network means that nodes in the patent keyword network are connected sporadically, and high clustering coefficient shows that nodes in the network are closely connected one another. Second, the cumulative degree distribution of the patent keyword network, as any other knowledge network like citation network or collaboration network, followed a clear power-law distribution. A well-known mechanism of this pattern is the preferential attachment mechanism, whereby a node with more links is likely to attain further new links in the evolution of the corresponding network. Unlike general normal distributions, the power-law distribution does not have a representative scale. This means that one cannot pick a representative or an average because there is always a considerable probability of finding much larger values. Networks with power-law distributions are therefore often referred to as scale-free networks. The presence of heavy-tailed scale-free distribution represents the fundamental signature of an emergent collective behavior of the actors who contribute to forming the network. In our context, the more frequently a patent keyword is used, the more often it is selected by researchers and is associated with other keywords or concepts to constitute and convey new patents or technologies. The evidence of power-law distribution implies that the preferential attachment mechanism suggests the origin of heavy-tailed distributions in a wide range of growing patent keyword network. Third, we found that among keywords that flew into a particular field, the vast majority of keywords with new links join existing keywords in the associated community in forming the concept of a new patent. This finding resulted in the same outcomes for both the short-term period (4-year) and long-term period (10-year) analyses. Furthermore, using the keyword combination information that was derived from the methodology suggested by our study enables one to forecast which concepts combine to form a new patent dimension and refer to those concepts when developing a new patent.

The Relationships among Perceived Value, Use-Diffusion, Loyalty of Mobile Instant Messaging Service (모바일 메신저 서비스의 지각된 가치, 사용-확산 그리고 충성도 간의 관계에 대한 연구)

  • Jo, Dong-Hyuk;Park, Jong-Woo;Chun, Hyun-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.193-212
    • /
    • 2011
  • Mobile instant messaging service is surfacing to an important keyword in the mobile market together with popularization of Smart phones. Mobile instant messaging service in Korea has become popular to the degree of 87.9% usages from total Smartphone holders, and it is expected that using populations will be more enlarged afterwards if considering a fact that its populations of Smartphone is continuously being increased after exceeding 10 million persons (Trend Monitor, June 2011). In the instant messaging market where competitions have been deepened day by day, raising customer's royalties will be the key for company's business survivals and goals of corporate marketing strategies. It could be said that understanding on which factors affect to customer retentions and royalties is very important. Specially, as changing status is being progressed very quickly in case of innovative mobile services like the instant messaging service, research necessities on how many do consumers use the services after accepting them, how much do consumers use them variously, and whether does it connect to long-term relations have been increased, but studies on such matters are in insufficient situations actually. Therefore, this study examined on which effects were affected to use-diffusion and loyalty factors from perceived customer vales' factors having been occurred after accepting the mobile instant messaging service, namely 'functional value', 'monetary value', 'emotional value', and 'social value'. Also, the study looked into what kind of roles do the service usage and using variety play to service's continued using intents as a loyalty index, recommending intents to others, and brand switching intents. And then the study laid the main purpose in trying to provide implications for enhancing customer securities and royalties on the mobile instant messaging service through research's results. The research hypotheses are as follows; H1: Perceived values will affect influences to royalties. H2: Use-Diffusion will affect influences to loyalty. H3: Perceived value will affect influences to loyalty. H4: The use-diffusion will play intermediating roles between perceived values and loyalty. Total 276 cases among collected 284 ones were used for the statistical analysis by SPSS ver. 15 package. Reliability, Factor analysis, regression were done. As the result of research, 'monetary value' and 'emotional value' affected to 'usage' among perceived value factors, and 'emotional value' was appeared as affecting the largest influence. Besides, the usage affected to constant-using intents and recommending intents to others, and using varieties were displayed as affecting to recommending intents to others. On the other hand, 'Using' and 'Using diversity' were appeared as not affecting to 'brand switching intentions'. Meanwhile, as the result of recognizing about effects of perceived values on the loyalty, it was appeared such like 'continued using intents' affected to'functional value', 'monetary value', and 'social value' first, and also 'monetary value', 'emotional value', and 'social value' affected to 'recommending intents to others'. On the other hand, it was shown such like only 'social value' affected influences to 'brand switching intents', and thus contrary results with the factor 'constant-using intents' were displayed. So, it seems that there are many applications to service provides who are worrying about marketing strategies for making consumer retains (constant-using) and new consumer's inductions (brand-switching intents). Finally, as a result of looking into intermediating roles of the use-diffusion factor in relations between conceived values and royalties at hypothesis 4, 'using' and 'using diversity' were displayed as affecting significant influences all together. Regarding to research result's implications, for expanding and promoting continued uses of the mobile instant messaging service by service providers: First, encouraging recognitions on the perceived value connected to users' service usage are necessary. Second, setting up user's use-diffusion strategies are required so as to enhance the loyalty after understanding a fact that use-diffusion patterns affecting to the service's loyalty are different. Finally, methods of raising customer loyalties and making constant relationships have to be grouped by analyzing on what are the customer value's factors that can satisfy users in competitive alterations.

Ontology-based User Customized Search Service Considering User Intention (온톨로지 기반의 사용자 의도를 고려한 맞춤형 검색 서비스)

  • Kim, Sukyoung;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.129-143
    • /
    • 2012
  • Recently, the rapid progress of a number of standardized web technologies and the proliferation of web users in the world bring an explosive increase of producing and consuming information documents on the web. In addition, most companies have produced, shared, and managed a huge number of information documents that are needed to perform their businesses. They also have discretionally raked, stored and managed a number of web documents published on the web for their business. Along with this increase of information documents that should be managed in the companies, the need of a solution to locate information documents more accurately among a huge number of information sources have increased. In order to satisfy the need of accurate search, the market size of search engine solution market is becoming increasingly expended. The most important functionality among much functionality provided by search engine is to locate accurate information documents from a huge information sources. The major metric to evaluate the accuracy of search engine is relevance that consists of two measures, precision and recall. Precision is thought of as a measure of exactness, that is, what percentage of information considered as true answer are actually such, whereas recall is a measure of completeness, that is, what percentage of true answer are retrieved as such. These two measures can be used differently according to the applied domain. If we need to exhaustively search information such as patent documents and research papers, it is better to increase the recall. On the other hand, when the amount of information is small scale, it is better to increase precision. Most of existing web search engines typically uses a keyword search method that returns web documents including keywords which correspond to search words entered by a user. This method has a virtue of locating all web documents quickly, even though many search words are inputted. However, this method has a fundamental imitation of not considering search intention of a user, thereby retrieving irrelevant results as well as relevant ones. Thus, it takes additional time and effort to set relevant ones out from all results returned by a search engine. That is, keyword search method can increase recall, while it is difficult to locate web documents which a user actually want to find because it does not provide a means of understanding the intention of a user and reflecting it to a progress of searching information. Thus, this research suggests a new method of combining ontology-based search solution with core search functionalities provided by existing search engine solutions. The method enables a search engine to provide optimal search results by inferenceing the search intention of a user. To that end, we build an ontology which contains concepts and relationships among them in a specific domain. The ontology is used to inference synonyms of a set of search keywords inputted by a user, thereby making the search intention of the user reflected into the progress of searching information more actively compared to existing search engines. Based on the proposed method we implement a prototype search system and test the system in the patent domain where we experiment on searching relevant documents associated with a patent. The experiment shows that our system increases the both recall and precision in accuracy and augments the search productivity by using improved user interface that enables a user to interact with our search system effectively. In the future research, we will study a means of validating the better performance of our prototype system by comparing other search engine solution and will extend the applied domain into other domains for searching information such as portal.

Dispute of Part-Whole Representation in Conceptual Modeling (부분-전체 관계에 관한 개념적 모델링의 논의에 관하여)

  • Kim, Taekyung;Park, Jinsoo;Rho, Sangkyu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.97-116
    • /
    • 2012
  • Conceptual modeling is an important step for successful system development. It helps system designers and business practitioners share the same view on domain knowledge. If the work is successful, a result of conceptual modeling can be beneficial in increasing productivity and reducing failures. However, the value of conceptual modeling is unlikely to be evaluated uniformly because we are lack of agreement on how to elicit concepts and how to represent those with conceptual modeling constructs. Especially, designing relationships between components, also known as part-whole relationships, have been regarded as complicated work. The recent study, "Representing Part-Whole Relations in Conceptual Modeling : An Empirical Evaluation" (Shanks et al., 2008), published in MIS Quarterly, can be regarded as one of positive efforts. Not only the study is one of few attempts of trying to clarify how to select modeling alternatives in part-whole design, but also it shows results based on an empirical experiment. Shanks et al. argue that there are two modeling alternatives to represent part-whole relationships : an implicit representation and an explicit one. By conducting an experiment, they insist that the explicit representation increases the value of a conceptual model. Moreover, Shanks et al. justify their findings by citing the BWW ontology. Recently, the study from Shanks et al. faces criticism. Allen and March (2012) argue that Shanks et al.'s experiment is lack of validity and reliability since the experimental setting suffers from error-prone and self-defensive design. They point out that the experiment is intentionally fabricated to support the idea, as such that using concrete UML concepts results in positive results in understanding models. Additionally, Allen and March add that the experiment failed to consider boundary conditions; thus reducing credibility. Shanks and Weber (2012) contradict flatly the argument suggested by Allen and March (2012). To defend, they posit the BWW ontology is righteously applied in supporting the research. Moreover, the experiment, they insist, can be fairly acceptable. Therefore, Shanks and Weber argue that Allen and March distort the true value of Shanks et al. by pointing out minor limitations. In this study, we try to investigate the dispute around Shanks et al. in order to answer to the following question : "What is the proper value of the study conducted by Shanks et al.?" More profoundly, we question whether or not using the BWW ontology can be the only viable option of exploring better conceptual modeling methods and procedures. To understand key issues around the dispute, first we reviewed previous studies relating to the BWW ontology. We critically reviewed both of Shanks and Weber and Allen and March. With those findings, we further discuss theories on part-whole (or part-of) relationships that are rarely treated in the dispute. As a result, we found three additional evidences that are not sufficiently covered by the dispute. The main focus of the dispute is on the errors of experimental methods: Shanks et al. did not use Bunge's Ontology properly; the refutation of a paradigm shift is lack of concrete, logical rationale; the conceptualization on part-whole relations should be reformed. Conclusively, Allen and March indicate properly issues that weaken the value of Shanks et al. In general, their criticism is reasonable; however, they do not provide sufficient answers how to anchor future studies on part-whole relationships. We argue that the use of the BWW ontology should be rigorously evaluated by its original philosophical rationales surrounding part-whole existence. Moreover, conceptual modeling on the part-whole phenomena should be investigated with more plentiful lens of alternative theories. The criticism on Shanks et al. should not be regarded as a contradiction on evaluating modeling methods of alternative part-whole representations. To the contrary, it should be viewed as a call for research on usable and useful approaches to increase value of conceptual modeling.

A Comparative Study of Information Delivery Method in Networks According to Off-line Communication (오프라인 커뮤니케이션 유무에 따른 네트워크 별 정보전달 방법 비교 분석)

  • Park, Won-Kuk;Choi, Chan;Moon, Hyun-Sil;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.131-142
    • /
    • 2011
  • In recent years, Social Network Service, which is defined as a web-based service that allows an individual to construct a public or a semi-public profile within a bounded system, articulates a list of other users with whom they share connections, and traverses their list of connections. For example, Facebook and Twitter are the representative sites of Social Network Service, and these sites are the big issue in the world. A lot of people use Social Network Services to connect and maintain social relationship. Recently the users of Social Network Services have increased dramatically. Accordingly, many organizations become interested in Social Network Services as means of marketing, media, communication with their customers, and so on, because social network services can offer a variety of benefits to organizations such as companies and associations. In other words, organizations can use Social Network Services to respond rapidly to various user's behaviors because Social Network Services can make it possible to communicate between the users more easily and faster. And marketing cost of the Social Network Service is lower than that of existing tools such as broadcasts, news papers, and direct mails. In addition, Social network Services are growing in market place. So, the organizations such as companies and associations can acquire potential customers for the future. However, organizations uniformly communicate with users through Social Network Service without consideration of the characteristics of the networks although networks have different effects on information deliveries. For example, members' cohesion in an offline communication is higher than that in an online communication because the members of the offline communication are very close. that is, the network of the offline communication has a strong tie. Accordingly, information delivery is fast in the network of the offline communication. In this study, we compose two networks which have different characteristic of communication in Twitter. First network is constructed with data based on an offline communication such as friend, family, senior and junior in school. Second network is constructed with randomly selected data from users who want to associate with friends in online. Each network size is 250 people who divide with three groups. The first group is an ego which means a person in the center of the network. The second group is the ego's followers. The last group is composed of the ego's follower's followers. We compare the networks through social network analysis and follower's reaction analysis. We investigate density and centrality to analyze the characteristic of each network. And we analyze the follower's reactions such as replies and retweets to find differences of information delivery in each network. Our experiment results indicate that density and centrality of the offline communicationbased network are higher than those of the online-based network. Also the number of replies are larger than that of retweets in the offline communication-based network. On the other hand, the number of retweets are larger than that of replies in the online based network. We identified that the effect of information delivery in the offline communication-based network was different from those in the online communication-based network through experiments. So, you configure the appropriate network types considering the characteristics of the network if you want to use social network as an effective marketing tool.

Corporate Credit Rating based on Bankruptcy Probability Using AdaBoost Algorithm-based Support Vector Machine (AdaBoost 알고리즘기반 SVM을 이용한 부실 확률분포 기반의 기업신용평가)

  • Shin, Taek-Soo;Hong, Tae-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.25-41
    • /
    • 2011
  • Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved them more powerful than traditional artificial neural networks (ANNs) (Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al., 2005; Kim, 2003).The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is so cost-sensitive particularly in financial classification problems such as the credit ratings that if the credit ratings are misclassified, a terrible economic loss for investors or financial decision makers may happen. Therefore, it is necessary to convert the outputs of the classifier into wellcalibrated posterior probabilities-based multiclass credit ratings according to the bankruptcy probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create the probabilities (Platt, 1999; Drish, 2001). This paper applied AdaBoost algorithm-based support vector machines (SVMs) into a bankruptcy prediction as a binary classification problem for the IT companies in Korea and then performed the multi-class credit ratings of the companies by making a normal distribution shape of posterior bankruptcy probabilities from the loss functions extracted from the SVMs. Our proposed approach also showed that their methods can minimize the misclassification problems by adjusting the credit grade interval ranges on condition that each credit grade for credit loan borrowers has its own credit risk, i.e. bankruptcy probability.