• Title/Summary/Keyword: systemic immunity

Search Result 74, Processing Time 0.033 seconds

Different Point of View to the Autoimmune Diseases and Treatment with Acupuncture

  • Inanc, Betul Battaloglu
    • Journal of Pharmacopuncture
    • /
    • v.23 no.4
    • /
    • pp.187-193
    • /
    • 2020
  • Objectives: It was aimed to investigate the basic action mechanism of the autoimmune diseases and common features of all diseases. Autoimmune disease are classified organ specific and systemic. Methods: These diseases are seen systemic and disease start locations, origins seem differently. This makes learning and understanding difficult. Autoimmune diseases investigated for easier understanding. It was noticed that, autoimmune diseases' starting places are specific and same all of them. This remarkable point is very important for acupuncture also. So; whole literatüre was researched and important point was found. Results: Whole autoimmune diseases are attack to mesodermal layers and mesodermal origin organs of the body's. The common property of all these disease are same; Diseases start from the mesoderm and mesodermal layer even though their organ origins' belongs to different germ layer. From this point of view, we were able to classify autoimmune diseases simply and it was planned how can we effect body in this context with acupuncture. Conclusion: And, when immunity comes into question, induction of adaptive immunity is depend on antigen presentation to T cells and this situation take place in the lymph node (LN) and also in the skin.When we sank the acupuncture needle into skin, signals create and start mesodermal contacts, during this time mesenchymal origin' autoimmune cells are regulated with this signals.

Dendritic Cell Based Cancer Immunotherapy: in vivo Study with Mouse Renal Cell Carcinoma Model (수지상세포를 이용한 항암 면역 치료: 생쥐 신장암 모델을 이용한 연구)

  • Lee, Hyunah;Choi, Kwang-Min;Baek, Soyoung;Lee, Hong-Ghi;Jung, Chul-Won
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.44-52
    • /
    • 2004
  • Background: As a potent antigen presenting cell and a powerful inducer of antigen specific immunity, dendritic cells (DCs) are being considered as a promising anti-tumor therapeutic module. The expected therapeutic effect of DCs in renal cell carcinoma was tested in the mouse model. Established late-stage tumor therapeutic (E-T) and minimal residual disease (MRD) model was considered in the in vivo experiments. Methods: Syngeneic renal cell carcinoma cells (RENCA) were inoculated either subcutaneously (E-T) or intravenously (MRD) into the Balb/c mouse. Tumor cell lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started 3 week (E-T model) or one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, the tumor growth and the systemic immunity were observed. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with RENCA cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor growth (E-T model) or formation (MRD model) was suppressed in pulsed-DC treated group. RENCA specific lymphocyte proliferation was observed in the RENCA tumor-bearing mice treated with pulsed-DCs. Primary cytotoxic T cell activity against RENCA cells was increased in pulsed-DC treated group. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs in established or minimal residual disease/metastasis state of renal cell carcinoma. Systemic tumor specific immunity including cytotoxic T cell activity was modulated also in pulsed-DC treated group.

Targeted Delivery of VP1 Antigen of Foot-and-mouth Disease Virus to M Cells Enhances the Antigen-specific Systemic and Mucosal Immune Response

  • Kim, Sae-Hae;Lee, Ha-Yan;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.157-162
    • /
    • 2013
  • Application of vaccine materials through oral mucosal route confers great economical advantage in animal farming industry due to much less vaccination cost compared with that of injection-based vaccination. In particular, oral administration of recombinant protein antigen against foot-and- mouth disease virus (FMDV) is an ideal strategy because it is safe from FMDV transmission during vaccine production and can induce antigen-specific immune response in mucosal compartments, where FMDV infection has been initiated, which is hardly achievable through parenteral immunization. Given that effective delivery of vaccine materials into immune inductive sites is prerequisite for effective oral mucosal vaccination, M cell-targeting strategy is crucial in successful vaccination since M cells are main gateway for luminal antigen influx into mucosal lymphoid tissue. Here, we applied previously identified M cell-targeting ligand Co1 to VP1 of FMDV in order to test the possible oral mucosal vaccination against FMDV infection. M cell-targeting ligand Co1-conjugated VP1 interacted efficiently with M cells of Peyer's patch. In addition, oral administration of ligand-conjugated VP1 enhanced the induction of VP1-specific IgG and IgA responses in systemic and mucosal compartments, respectively, in comparison with those from oral administration of VP1 alone. In addition, the enhanced VP1-specific immune response was found to be due to antigen-specific Th2-type cytokine production. Collectively, it is suggested that the M cell-targeting strategy could be applied to develop efficient oral mucosal vaccine against FMDV infection.

Evaluation of systemic and mucosal immune responses in mice administered with novel recombinant Salmonella vaccines for avian pathogenic Esherichia coli

  • Oh, In-Gyeong;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.4
    • /
    • pp.199-205
    • /
    • 2013
  • Avian pathogenic Escherichia coli (APEC) is a causative agent for a number of extra intestinal diseases and account for significant losses to the poultry industry. Since protective immunity against APEC is largely directed to virulence antigens, we have individually expressed four different viulence antigens, papA, papG, IutA, and CS31A, using an attenuated Salmonella Typhimurium and a plasmid pBB244. Following oral immunization of mice with combination of two or four of these strains, serum IgG and mucosal IgA responses were elicited against each antigen represented in the mixture. The antigen-specific mucosal IgA responses were significantly higher in the group of mice immunized with the heat-labile Escherichia coli enterotoxin B subunit (LTB) strain than those in the group of mice immunized without the LTB strain. While, there was no significant difference between these two groups in antigen-specific serum IgG responses. The results showed that LTB could act as mucosal immune adjuvant. To assess the nature of immunity, the distribution of antigen-specific IgG isotypes was analyzed. All groups promoted Th1-type immunity as determined by the IgG2a/IgG1 ratio. Thus, our findings provided evidence that immunization with a combination of several vaccine strains is one of the strategies of developing effective vaccines against APEC.

Intrinsic and Extrinsic Regulation of Hematopoiesis in Drosophila

  • Koranteng, Ferdinand;Cho, Bumsik;Shim, Jiwon
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.101-108
    • /
    • 2022
  • Drosophila melanogaster lymph gland, the primary site of hematopoiesis, contains myeloid-like progenitor cells that differentiate into functional hemocytes in the circulation of pupae and adults. Fly hemocytes are dynamic and plastic, and they play diverse roles in the innate immune response and wound healing. Various hematopoietic regulators in the lymph gland ensure the developmental and functional balance between progenitors and mature blood cells. In addition, systemic factors, such as nutrient availability and sensory inputs, integrate environmental variabilities to synchronize the blood development in the lymph gland with larval growth, physiology, and immunity. This review examines the intrinsic and extrinsic factors determining the progenitor states during hemocyte development in the lymph gland and provides new insights for further studies that may extend the frontier of our collective knowledge on hematopoiesis and innate immunity.

The Alterations of the Lymphocyte Subsets and the Natural Killer Cell Activity in the Pregnant Mouse (수태중인 생쥐에 있어서 림프구아형 및 자연살해세포 활성도의 변화)

  • 신주옥;고기석;최임순
    • Biomedical Science Letters
    • /
    • v.2 no.2
    • /
    • pp.211-222
    • /
    • 1996
  • The conceptus which are resulted by mating between two genetically non-identical partners can be considered to be an allograft to the mother science which is not rejected by the mother's immunological attack. The present studies have been, therefore, attempted in order to elucidate the mechanism by which protection of the fete-placental allograft, between the C3H/HeJ female mouse and DBA/2 male mouse occurred. For this purpose, firstly systemic immunity was investigated by measuring T and B lymphocytes subsets. Natural killer cell activity in maternal splenic tissue and by observing the effects of pregnancy serums, progesterone and hCG on immune systems. Secondly, local immunity also investigated by measuring T lymphocytes subsets, natural killer cell activity in lymph nodes draining the uterus. The subsets of Thy-1.2$^+$ cells and L 3T4$^+$ cells decreased slightly while the subsets of Ly2$^+$ cell increased significantly compared with those of the control group beyond the mid-gestational stage. The subsets of B cell gradually in-creased from the mid-gestational stage untill delivery. The natural killer cell activity in the maternal splenic tissue significantly increased during the period of 5th to 8th day of gestation. The natural killer cell activity was significantly suppressed by the pregnancy serums and non-pregnant serums compared with those of serum-free group. The treatment of hCG significantly suppressed natural killer cell activity in the dose dependent manner (1 unit/ml-1000 unit/ml) while pro-gesterone increased the natural killer cell activity at phamarcological dose only. In the lymph nodes draining the uterus, the subsets of Thy-1.2$^+$ cells significantly increased during the period of implantation and L3T4$^+$ cell subsets slightly increased during the mid-gestational stage. The subsets of Ly2$^+$ cell increased significantly during the mid-gestational stage, but decreasing slightly be-fore delivery. The natural killer cell activity was significantly elevated after the implantation period in the lymph nodes draining the uterus. The natural killer cell activity of the lymph nodes draining the uterus was higher than those of splenic tissue during the same periods of gestation. It is therefore, concluded that during the pregnancy, the phenomena which the fete-placental allograft has not been rejected and rather protected from the maternal immunological attack might be due to local immune suppression in fete-maternal interface tissues rather than systemic immune suppression. And the subsets of Thy-1.2$^+$ cells and L3T4$^+$ cells mainly contribute to accepting allograft in early stage of pregnancy, while the subsets of Ly2$^+$ cell and the subsets of B cell increased significantly compared with those of the control group beyond the mid-gestational stage, so their role in systemic immunity and local immunity gradually increased from the mid-gestational stage until delivery.

  • PDF

Clinical efficacy and mechanism of probiotics in allergic diseases

  • Kim, Ha-Jung;Kim, Hyung Young;Lee, So-Yeon;Seo, Ju-Hee;Lee, Eun;Hong, Soo-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.9
    • /
    • pp.369-376
    • /
    • 2013
  • A complex interplay between genetic and environmental factors partially contributes to the development of allergic diseases by affecting development during prenatal and early life. To explain the dramatic increase in the prevalence of allergic diseases, the hygiene hypothesis proposed that early exposure to infection prevented allergic diseases. The hygiene hypothesis has changed to the microbial hypothesis, in which exposure to microbes is closely linked to the development of the early immune system and allergic diseases. The intestinal flora may contribute to allergic disease through its substantial effect on mucosal immunity. Based on findings that exposure to microbial flora early in life can change the Th1/Th2 balance, thus favoring a Th1 cell response, probiotics may be beneficial in preventing allergic diseases. However, evidence from clinical and basic research to prove the efficacy of probiotics in preventing allergy is lacking. To date, studies have yielded inconsistent findings on the usefulness of probiotics in allergic diseases. It is difficult to demonstrate an exact effect of probiotics on asthma, allergic rhinitis, and food allergy because of study limitations, such as different first supplementation period, duration, different strains, short follow-up period, and host factors. However, many studies have demonstrated a significant clinical improvement in atopic dermatitis with the use of probiotics. An accurate understanding of the development of human immunity, intestinal barrier function, intestinal microbiota, and systemic immunity is required to comprehend the effects of probiotics on allergic diseases.

Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles

  • Song, Geun Cheol;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.724-732
    • /
    • 2018
  • Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.

Effects of Olaquindox and Cyadox on Immunity of Piglets Orally Inoculated with Escherichia coli

  • Ding, Mingxing;Yuan, Zonghui;Wang, Yulian;Zhu, Huiling;Fan, Shengxian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1320-1325
    • /
    • 2005
  • A 2${\times}$3 factorial arrangement of treatments was used to determine the effects of olaquindox and cyadox on immune response of Landrace${\times}$Large-White geld piglets that had been orally given 10$^{10}$ CFU of Escherichia coli (E. coli, O$_{139}$:K$_{88}$). Factors included (1) E. coli inoculation or control, and (2) no antimicrobials, 100 mg/kg olaquindox and 100 mg/kg cyadox in the basal diet respectively. E. coli inoculums were orally administered 7 days after the diets were supplemented with olaquindox and cyadox. The effects of the two antimicrobials were assessed in terms of: (1) average daily gain (ADG), (2) systemic immune response (the number of white blood cells and lymphocytes, leukocyte bactericidal capacity, lymphocyte proliferation response to PHA, immunoglobulin concentrations, and total serous hemolytic complement activity), and (3) intestinal mucosal immunity including the number of intraepithelial lymphocytes (IELs) and immunoglobulin A secreting cells (ASCs) in the intestinal lamina propria. E. coli inoculation reduced ADG (p<0.05) during the period of d 0 to d 14 after the challenge while the antimicrobial supplementations improved ADG (p<0.01) during the experiment. ADG in cyadox-supplemented pigs was higher (p<0.05) than that in olaquindox-supplemented pigs. The antimicrobials decreased IEL and ASC counts in the jejunum and ileum (p<0.01) while E. coli inoculation caused them to increase (p<0.01). Jejunal ASCs in the cyadox-supplemented pigs were lower (p<0.05) than those in the olaquindox-supplemented. E. coli elicited increase (p<0.05) in white blood cell counts, leukocyte bactericidal capacity, lymphocyte proliferation rate, serous IgA concentrations, and serous hemolytic complement activity. The antimicrobials decreased the measured systemic immune parameters, but not significantly (p>0.05). The data suggest that olaquindox and cyadox suppress E. coli-induced immune activation, especially intestinal mucosal immune activation, which may be involved in the observed growth promotion.

Interpretation of the Forest Therapy Process and Effect Verification through KeyWord Analysis of Literature on Forest Therapy (산림치유 효과 검증 연구의 주요어 분석을 통한 치유 발현과정 해석)

  • Park, Kyeong-Ja;Shin, Chang-Seob;Kim, Dongsoo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.82-90
    • /
    • 2021
  • In this study, the validity of the forest therapy process, in which forest activities using forest therapy factors lead to immunity promotion and health promotion, was analyzed theoretically and qualitatively to refine and systemize the forest therapy concept. Research and analysis data were collected from the websites of institutions related to forest therapy; 33 theses and 33 original research articles from 2000 to March 2020 were searched for forest therapy key words, as well as the prize winning work of the 2016 forest therapy experience essay. A word cloud was generated by frequency of nouns and adjectives and from the key words in the web pages, theses, articles, and the forest therapy experience essay. Through interpretation of word frequency, the systemic flow of forest therapy was defined. The results suggest that the source of forest therapy's power was a positive experience of the forest and an improved attitude toward nature as well as forest therapeutic factors. The therapeutic effect is maximized through the forest healing program, leading to physical and mental resilience and resistance; consequently, health and immunity are promoted. From this study, forest therapy is proposed as "a health promotion activity for the psychological, physical, and spiritual resilience of the subjects through various environmental factors of the forest, positive experiences, and attitudes toward the forest."