• 제목/요약/키워드: system parameters

검색결과 14,615건 처리시간 0.045초

適應制御裝置에 關한 硏究 (A Study of the Adaptive Control System)

  • 하주식;최경삼;김승호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.19-31
    • /
    • 1979
  • Recently the adaptive control system, which keeps the control system always optimal by adjusting the control parameters automatically according to the variations of the plant parameters, have become very important in the field of control engineering. The adaptive control systems are usally composed of the plant identification, the decision of the optimal control parameters, and the adjustment of the control parameters. This paper deals with a method of the adaptive control system when PI or PID controller is used in the feed back control system. Its controlled object (the plant) is assumed to be described by the transfer function of $\frac{ke^{-LS}}{1+TS}$ where k, T and L are steady state gain, time constant and pure dead time respectively, and their values are variable in accordance with the change of environmental circumstance. It has been known that a pseudo-random binary signal is quite effective for the measurement of an impulse response of a plant. In adaptive control systems, however, the impulse response itself is not appropriate to determine the control parameters. In this paper, the authors propose a method to estimate directly the parameters of the plant k, T and L by means of the correlation technique using 3 level M-sequence signal as a test signal. The authors also propose a method to determine the optimal parameters of the PI or PID controller in the sense of minimizing the square integral of the control error in the feed back control system, and the values of the optimal parameters are computed numerically for various values of T and L, and the results are examined and compared with those of the conventional methods. Finally the above-mentioned two methods are combined and an algorithm to struct an adaptive control system is suggested. The experiments for the indicial responses by means of both the model of the temperature control system using SCR actuater and the analog simulations have shown good results as expected, and the effectiveness of the proposed method is verified. The M-sequence generator and the time delay circuit, which are manufactured for the experiments, are operated in quite a good condition.

  • PDF

설계 인자와 설계 목표를 이용한 진화 설계 및 재설계 (Evolutionary Design and Re-design Using Design Parameters and Goals)

  • 이강수;이건우
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.106-115
    • /
    • 1999
  • Design parameters and goals play important roles in design. Design goals are the required functions of the design elements and explicitly expressed by design parameters. Design parameters also indicate the relations among design elements, by which constraint networks can be constructed and some useful information can be induced. In this study, the mechanical design process is assumed to be the assignment of design goals and their realization through the evolutionary refinement of the design parameters. Thus an integrated design system is proposed to support the process of assigning the design goals and refining the values of the design parameters. In the design system, a genetic engine that utilizes a genetic algorithm is installed to simulate an iterative design process, which leads to an evolutionary design. The genetic engine treats design parameters as genes and design goals as evaluation function. Re-design and design modification are facilitated by the design parameters. The re-design can be activated in the design system by using the information stored in the design parameters when design parameters or goals are changed.

  • PDF

원자력발전소 주급수펌프구동용 증기터빈 제어시스템 현장 적용에 따른 초기 제어상수 결정 (Determinations of Initial Control Parameters According to the Application of Control System for Feed Water Pump Turbine into a Nuclear Power Plant)

  • 최인규;우주희
    • 조명전기설비학회논문지
    • /
    • 제23권4호
    • /
    • pp.72-78
    • /
    • 2009
  • 이 논문은 국내 원자력 발전소에서 급수펌프 구동용 소형 터빈의 아날로그 제어시스템을 디지털 방식으로 교체한 후 발전소를 기동하기 전에 최초 제어 파라미터를 설정하는 방법에 대하여 기술하고 있다. 기존 제어시스템의 제어상수가 알려져 있는 경우에는 초기 제어상수를 쉽게 결정할 수 있으나 보통은 아날로그 시스템의 제어상수를 파악할 수 없는 경우가 많으며 이 때 초기 제어상수와 최적 제어상수는 크게 차이가 날 수도 있다. 이런 경우에는 발전소 자체의 기동이 위험한 경우도 발생할 수 있다. 매우 간단한 실험이지만 제어기술자가 플랜트를 기동하기 위해서 매우 유용한 방법과 실제로 이를 적용한 사례에 대하여 기술한다.

고차 주파수응답함수를 이용한 비선형시스템의 매개변수 추정 (Use of Higher Order Frequency Response Functions for Non-Linear Parameter Estimation)

  • 이건명
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.223-229
    • /
    • 1997
  • Presented is a method to estimate system parameters of a system with polynomial non-linerities from the measured higher order frequency response functions. Higher order FRFs can be measured on some restricted regions by sinusoidally exciting a non-linear system with various input amplitudes and measuring the response component at the excitation frequency. These higher order FRFs can be expressed in terms of system parameter, and the system parameters can be estimated from the measured FRFs. Since the expressions for higher order FRFs are complicated, system parameters can be estimated from them using an optimization technique. The present method has been applied to a simulated single degree of freedom system with non-linear stiffness and damping, and has estimated accurate system parameters.

  • PDF

상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정 (Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records)

  • Kim Jae Min;Feng. M. Q.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

Probabilistic optimization of nailing system for soil walls in uncertain condition

  • Mitra Jafarbeglou;Farzin Kalantary
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.597-609
    • /
    • 2023
  • One of the applicable methods for the stabilization of soil walls is the nailing system which consists of tensile struts. The stability and safety of soil nail wall systems are influenced by the geometrical parameters of the nailing system. Generally, the determination of nailing parameters in order to achieve optimal performance of the nailing system for the safety of soil walls is defined in the framework of optimization problems. Also, according to the various uncertainty in the mechanical parameters of soil structures, it is necessary to evaluate the reliability of the system as a probabilistic problem. In this paper, the optimal design of the nailing system is carried out in deterministic and probabilistic cases using meta-heuristic and reliability-based design optimization methods. The colliding body optimization algorithm and first-order reliability method are used for optimization and reliability analysis problems, respectively. The objective function is defined based on the total cost of nails and safety factors and reliability index are selected as constraints. The mechanical properties of the nailing system are selected as design variables and the mechanical properties of the soil are selected as random variables. The results show that the reliability of the optimally designed soil nail system is very sensitive to uncertainty in soil mechanical parameters. Also, the design results are affected by uncertainties in soil mechanical parameters due to the values of safety factors. Reliability-based design optimization results show that a nailing system can be designed for the expected level of reliability and failure probability.

지진하중에 의해 발생된 가속도를 이용한 시간창 기법에 의한 구조물의 손상탐지 (Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake)

  • 박승근;이해성
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.529-535
    • /
    • 2005
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least squared errors between the measured acceleration and the calculated acceleration by a mathematical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping. A new regularization function defined by the L1-norm of the first derivative of system parameters with respect to time is proposed to alleviate the ill-posed characteristics of inverse problems and to accommodate discontinuities of system parameters in time. The time window concept is proposed to trace variation of system parameters in time. Numerical simulation study is performed through a two-span continuous truss subject to ground motion.

  • PDF

부하차단시험에 의한 서인천복합화력 발전기.제어계의 모델링 및 검증 (Modeling and verification of generator/control system of Seo-Inchon combined-cycle plant by load rejection test)

  • 최경선;문영환;김동준;추진부;류승헌;권태원
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.501-510
    • /
    • 1996
  • The gas-turbine generator of Seo-Incheon combined-cycle plant was tested for derivation of a model for dynamic analysis. Load rejection and AVR step test was performed to get the dynamic response of generator. The parameters of generator/control system model were determined by these measured data. No-load saturation test was performed for the saturation characteristics of the generator under steady state. V-curve test was also performed so as to find exact generator parameters. Q-axis parameters of generator was derived by measuring power angle. AVR and governor constants have been tuned by their oscillatory period and setting time characteristics. The derived parameters of generator control system is verified by one-machine infinite bus system simulation. (author). 7 refs., 20 figs., 5 tabs.

  • PDF

Study on sensitivity of modal parameters for suspension bridges

  • Liu, Chunhua;Wang, Ton-Lo;Qin, Quan
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.453-464
    • /
    • 1999
  • Safety monitoring systems of structures generally resort to detecting possible changes of dynamic system parameters. Sensitivity analysis of these dynamic system parameters may implement these techniques. Conventional structural eigenvalue problems are discussed in the scope of those systems with deterministic parameters. Large and flexible structures, such as suspension bridges, actually possess stochastic material properties and these random properties unavoidably affect the dynamic system parameters. The sensitivity matrix of structural modal parameters to basic design variables has been established in this paper. Moreover, second order statistics of natural frequencies due to the randomness of material properties have been discussed. It is concluded from numerical analysis of a modem suspension bridge that although the second order statistics of frequencies are small relatively to the change of basic design variables, such as density of mass and modulus of elasticity, the sensitivities of modal parameters to these variables at different locations change in magnitude.

Time Domain Identification of an Interval System and Some Extremal Properties

  • Youngtae Woo;Taeshin Cho;Park, Sunwook;Kim, Youngchol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.123-128
    • /
    • 1998
  • This paper presents time domain identification of an interval system. We conjectured that Markov parameters (Pulse Responses) from Kharitonov plants would envelope those of the whole interval system. The examination on interrelations between Markov parameters from Kharitonov plants of an interval system and those of the whole interval system determines the validity of the conjecture and is used to give some extremal properties of Markov parameters. The results of this paper are shown in simulations on MBC500 Magnetic Bearing System and a given interval system.

  • PDF