• 제목/요약/키워드: system parameters

검색결과 14,615건 처리시간 0.041초

On the Design of a WiFi Direct 802.11ac WLAN under a TGn MIMO Multipath Fading Channel

  • Khan, Gul Zameen;Gonzalez, Ruben;Park, Eun-Chan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1373-1392
    • /
    • 2017
  • WiFi Direct (WD) is a state of the art technology for a Device-to-Device (D2D) communication in 802.11 networks. The performance of the WD system can be significantly affected by some key factors such as the type of application, specifications of MAC and PHY layer parameters, and surrounding environment etc. It is, therefore, important to develop a system model that takes these factors into account. In this paper, we focus on investigating the design parameters of the PHY layer that could maximize the efficiency of the WD 802.11 system. For this purpose, a basic theoretical model is formulated for a WD network under a 2x2 Multiple In Multiple Out (MIMO) TGn channel B model. The design level parameters such as input symbol rate and antenna spacing, as well as the effects of the environment, are thoroughly examined in terms of path gain, spectral density, outage probability and Packet Error Rate (PER). Thereafter, a novel adaptive algorithm is proposed to choose optimal parameters in accordance with the Quality of Experience (QoE) for a targeted application. The simulation results show that the proposed method outperforms the standard method thereby achieving an optimal performance in an adaptive manner.

Friction tuned mass damper optimization for structure under harmonic force excitation

  • Nasr, Aymen;Mrad, Charfeddine;Nasri, Rachid
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.761-769
    • /
    • 2018
  • In this work, an optimization method of Friction Tuned Mass Damper (FTMD) parameters is presented. Friction tuned mass dampers (FTMD) are attached to mechanical structures to reduce their vibrations with dissipating the vibratory energy through friction between both bodies. In order to exploit the performances of FTMD, the determination of the optimum parameters is recommended. However, the presence of Coulomb's friction force requires the resolution of a non-linear stick-slip problem. First, this work aims at determining the responses of the vibratory system. The responses of the main mass and of the FTMD are determined analytically in the sticking and sliding phase using the equivalent damping method. Second, this work aims to optimize the FTMD parameters; the friction coefficient and the tuned frequency. The optimization formulation based on the Ricciardelli and Vickery method at the resonance frequencies, this method is reformulated for a system with a viscous damping. The inverse problem of finding the FTMD parameters given the magnitude of the force and the maximum acceptable displacement of the primary system is also considered; the optimization of parameters leads to conclude on the favorable FTMD giving significant vibration decrease, and to advance design recommendations.

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.

Artificial neural fuzzy system and monitoring the process via IoT for optimization synthesis of nano-size polymeric chains

  • Hou, Shihao;Qiao, Luyu;Xing, Lumin
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.375-386
    • /
    • 2022
  • Synthesis of acrylate-based dispersion resins involves many parameters including temperature, ingredients concentrations, and rate of adding ingredients. Proper controlling of these parameters results in a uniform nano-size chain of polymer on one side and elimination of hazardous residual monomer on the other side. In this study, we aim to screen the process parameters via Internet of Things (IoT) to ensure that, first, the nano-size polymeric chains are in an acceptable range to acquire high adhesion property and second, the remaining hazardous substance concentration is under the minimum value for safety of public and personnel health. In this regard, a set of experiments is conducted to observe the influences of the process parameters on the size and dispersity of polymer chain and residual monomer concentration. The obtained dataset is further used to train an Adaptive Neural network Fuzzy Inference System (ANFIS) to achieve a model that predicts these two output parameters based on the input parameters. Finally, the ANFIS will return values to the automation system for further decisions on parameter adjustment or halting the process to preserve the health of the personnel and final product consumers as well.

IDENTIFICATINO OF DYNAMIC PARAMETER OF THE RUBBER CRAVLES SYSTEM FOR FARM MACHINERY

  • Inoue, Eiji;Konya, Hideyuki;Hirai, Yasumaru;Noguchi, Ryozo;Hashiguchi, Koichi;Choe, Jung-Seob
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.146-153
    • /
    • 2000
  • The rubber crawler system for farm machine is composed of driving units such as track rollers, driving sprockets and rubber crawlers. Vibration characteristics of the rubber crawler system varies by driving speed, center of gravity, mass□moment of inertial□location arrangement of track rollers and dynamic parameters such as dynamic spring constant (k) and viscous damping coefficient (c) of a rubber crawler. In general, vibration of the rubber crawler system occurs by reason for mechanical interaction between the rubber crawler and track rollers. Because the dynamic spring constant and viscous damping coefficient vary periodically by mechanical characteristics(deformation characteristics) of the rubber crawler when track rollers drive on the between lugs of the rubber crawler. Therefore, both dynamic parameters k and c were expressed as Fourier series by authors through the shaking test of the rubber crawler and further, vibration characteristics of the rubber crawler system could be simulated analytically. However, actual values of dynamic parameters k and c are different from those obtained by the shaking test because dynamic characteristics of the rubber crawler vary by the effect of variable tension and driving resistance of track rollers. So, actual values of k and c should be identified in the condition of actual driving test. In this study, dynamic parameters such as k and c of the rubber crawler system, which are expressed as Fourier series, were identified using the Gauss-Newton Method. Therefore, validity of identified parameters k and c was discussed through the simulation using experimental data of actual driving test. As a result, in the Fourier series of dynamic parameters of spring constant k and viscous damping coefficient c, excellent parameter convergence and simulation were observed using the Fourier series' zero order and first term of the dynamic model. Furthermore, it was clarified that identification for model parameters which are fitted to actual dynamic motion (vibration) wave of the crawler system was possible by using the time series data observed in vertical and pitching motion of the crawler system.

  • PDF

구분적선형시스템을 이용한 해양 구조물의 거동분석 (Analysis of Response behaviors of offshore mooring structures by a piecewise-linear system)

  • 마호성
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.251-265
    • /
    • 1997
  • 해양계선시스템(offshore mooring system)의 거동을 구분적선형시스템(piecewise-linear system)을 이용하여 분석하였다. 계선시스템의 복원력을 유도하고 거기에 상응하는 근사치 구분적선형시스템의 복원력을 구하여 두 시스템의 복원력을 비교하였다. 다양한 파력 하에서의 계선시스템의 응답거동을 분석하였다. 시스템의 비선형정도 및 매개변수의 영향에 대하여 집중적으로 연구하였다. 시스템의 응답거동의 특성은 포인케어맵(Poincare map)을 통하여 확인하였다. 구분적선형시스템을 이용하여 분석한 결과, 계선시스템은 일반 조화, 열조화 및 복잡한 비선형거동인 chaos를 포함한 다양한 응답거동을 갖음을 알아냈다. 여러 값의 매개변수를 적용하여 시스템의 응답거동에 미치는 영향을 알아냈으며, 매개변수지도를 통하여 응답거동의 영역을 확인하였다.

  • PDF

광 위상 공액기를 이용한 최적화된 640 Gbps WDM 시스템의 보상 특성 (Compensation Characteristics of Optimized 640 Gbps WDM System Using Optical Phase Conjugator)

  • 이성렬
    • 한국항행학회논문지
    • /
    • 제10권2호
    • /
    • pp.159-167
    • /
    • 2006
  • 본 논문에서는 $16{\times}40$ Gbps WDM 시스템에서 모든 채널을 효과적으로 보상할 수 있는 광 위상 공액기의 최적 위치와 광섬유의 최적 분산 계수 값을 도출하는 수치적 방법을 제안하였다. 그리고 이 방법의 유용성을 확인하기 위하여 도출된 두 최적 파라미터를 갖는 시스템에서의 보상 특성을 현재 일반화된 MSSI (Mid-Span Spectral Inversion)에서의 보상 특성과 비교하였다. 우선 눈 열림 패널티와 비트 에러율 특성 분석을 통해 최적화된 파라미터를 사용하면 기존 MSSI를 채택한 시스템에 비해 매우 큰 성능 개선이 이루어지는 것을 확인하였다. 그리고 최적 파라미터들은 그것을 구하는 순서에 크게 관계없지만 두 파라미터가 서로 의존해서 구해져야 한다는 것을 확인할 수 있었다.

  • PDF

적응최적시간제어를 사용한 전기로의 온도제어 (Temperature Control of Electric Furnaces using Adaptive Time Optimal Control)

  • 전봉근;송창섭;금영탁
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.120-127
    • /
    • 2009
  • An electric furnace, inside which desired temperatures are kept constant by generating heat, is known to be a difficult system to control and model exactly because system parameters and response delay time vary as the temperature and position are changed. In this study the heating system of ceramic drying furnaces with time-varying parameters is mathematically modeled as a second order system and control parameters are estimated by using a RIV (Recursive Instrumental-Variable) method. A modified bang-bang control with magnitude tuning is proposed in the time optimal temperature control of ceramic drying electric furnaces and its performance is experimentally verified. It is proven that temperature tracking of adaptive time optimal control using a second order model is more stable than the GPCEW (Generalized Predictive Control with Exponential Weight) and rapidly settles down by pre-estimation of the system parameters.

모달 파라미터를 이용한 동적 시스템의 운동 방정식 구성 (Constructing Equations of Motion for a Dynamic System from Modal Parameters)

  • 황우석
    • 한국항공우주학회지
    • /
    • 제35권1호
    • /
    • pp.40-45
    • /
    • 2007
  • 구조물의 모달 해석 또는 모달 시험은 구조물의 동적 특성을 나타내는 모달 파라미터들을 구하는 과정이다. 모달 파라미터에는 고유 진동수, 감쇠율, 진동 모드의 세 가지 값들이 있다. 본 연구에서는 시스템의 개발과정에서 당연히 수행되는 모달 해석의 결과인 모달 파라미터를 활용하여 시스템 방정식을 구하는 방법에 대한 연구를 수행하였다. 상태 방정식의 고유치와 고유 벡터의 상관관계로부터 물리적 시스템 행렬인 질량, 감쇠, 강성 행렬을 각각 구하는 방법을 개발하였다. 간단한 질량-스프링-댐퍼 시스템과 외팔보에 대한 수치 예제를 통하여 개발된 방법의 유용성과 정확도를 검증하였다

Model Predictive Control for Productions Systems Based on Max-plus Algebra

  • Hiroyuki, Goto;Shiro, Masuda;Kazuhiro, Takeyasu;Takashi, Amemiya
    • Industrial Engineering and Management Systems
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2002
  • Among the state-space description of discrete vent systems, the max-plus algebra is known as one of the effective approach. This paper proposes a model predictive control (MPC) design method based on the max-plus algebra. Several studies related to these topics have been done so far under the constraints that system parameters are constant. However, in practical systems such as production systems, it is common and sometimes inevitable that system parameters vary by each event. Therefore, it is of worth to design a new MPC controller taking account of adjustable system parameters. In this paper, we formulate system parameters as adjustable ones, and they are solved by a linear programing method. Since MPC determines optimal control input considering future reference signals, the controller can be more robust and the operation cost can be reduced. Finally, the proposed method is applied to a production system with three machines, and the effectiveness of the proposed method is verified through a numerical simulation.