• Title/Summary/Keyword: system buckling analysis

Search Result 302, Processing Time 0.025 seconds

Buckling Design of Temporary Bridges Subjected to Both Bending and Compression (압축과 휨을 동시에 받는 가교량 주요부재의 좌굴설계)

  • So Byoung-Hoon;Kyung Yong-Soo;Bang Jin-Hwan;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.977-984
    • /
    • 2006
  • Generally main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges is presented using 3D system buckling analysis and second-order elastic analysis. 2 types of temporary bridges, which are possible to be designed and fabricated in reality, are chosen and the buckling design for them is performed considering load combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, effects of live loads on effective length of main members, transition of ~id buckling modes, and effects of second-order analysis are investigated through case study of 2 temporary bridges.

  • PDF

Effective buckling length of steel column members based on elastic/inelastic system buckling analyses

  • Kyung, Yong-Soo;Kim, Nam-Il;Kim, Ho-Kyung;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.651-672
    • /
    • 2007
  • This study presents an improved method that uses the elastic and inelastic system buckling analyses for determining the K-factors of steel column members. The inelastic system buckling analysis is based on the tangent modulus theory for a single column and the application is extended to the frame structural system. The tangent modulus of an inelastic column is first derived as a function of nominal compressive stress from the column strength curve given in the design codes. The tangential stiffness matrix of a beam-column element is then formulated by using the so-called stability function or Hermitian interpolation functions. Two inelastic system buckling analysis procedures are newly proposed by utilizing nonlinear eigenvalue analysis algorithms. Finally, a practical method for determining the K-factors of individual members in a steel frame structure is proposed based on the inelastic and/or elastic system buckling analyses. The K-factors according to the proposed procedure are calculated for numerical examples and compared with other results in available references.

Case Study for Buckling Design of Temporary Bridges using System Buckling Analysis (시스템좌굴 해석법을 이용한 라멘형가교 주요부재의 좌굴설계에 관한 사례 연구)

  • Kyung, Yong Soo;So, Byoung Hoon;Bang, Jin Hwan;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2007
  • Generally, main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges was presented using a 3D system buckling analysis and second-order elastic analysis. Six types of temporary bridges, which can be designed and fabricated in reality, were chosen and the buckling design for them was performed in consideration ofload combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, transition of 3D buckling modes, and effects of second-order analysis were investigated through a case study involving six temporary bridges.

Local and global buckling condition of all-steel buckling restrained braces

  • Mirtaheri, Seyed Masoud;Nazeryan, Meissam;Bahrani, Mohammad Kazem;Nooralizadeh, Amin;Montazerian, Leila;Naserifard, Mohamadhosein
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.217-228
    • /
    • 2017
  • Braces are one of the retrofitting systems of structure under earthquake loading. Buckling restrained braces (BRBs) are one of the very efficient braces for lateral loads. One of the key needs for a desirable and acceptable behavior of buckling-restraining brace members under intensive loading is that it prevents total buckling until the bracing member tolerates enough plastic deformation and ductility. This paper presents the results of a set of analysis by finite element method on buckling restrained braces in which the filler materials within the restraining member have been removed. These braces contain core as the conventional BRBs, but they have a different buckling restrained system. The purpose of this analysis is conducting a parametric study on various empty spaces between core and restraining member, the effect of friction between core and restraining member and applying initial deformation to brace system to investigate the global buckling behavior of these braces. The results of analysis indicate that the flexural stiffness of restraining member, regardless of the amount of empty space, can influence the global buckling behavior of brace significantly.

An Improved Stability Design of Steel Cable-Stayed Bridges using Second-Order Effect (2차효과를 고려한 강사장교의 개선된 좌굴해석)

  • Kyung Yong-Soo;Kim Nam-Il;Lee Jun-Sok;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.993-1000
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.

  • PDF

Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM

  • Shokravi, Maryam
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.327-346
    • /
    • 2017
  • Laminated plates have many applications in different industrials. Buckling analysis of these structures with the nano-scale reinforcement has not investigated yet. However, buckling analysis of embedded laminated plates with nanocomposite layers is studied in this paper. Considering the single-walled carbon nanotubes (SWCNTs) as reinforcement of layers, SWCNTs agglomeration effects and nonlinear analysis using numerical method are the main contributions of this paper. Mori-Tanaka model is applied for obtaining the equivalent material properties of structure and considering agglomeration effects. The elastic medium is simulated by spring and shear constants. Based on first order shear deformation theory (FSDT), the governing equations are derived based on energy method and Hamilton's principle. Differential quadrature method (DQM) is used for calculating the buckling load of system. The effects of different parameters such as the volume percent of SWCNTs, SWCNTs agglomeration, number of layers, orientation angle of layers, elastic medium, boundary conditions and axial mode number of plate on the buckling of the structure are shown. Results indicate that increasing volume percent of SWCNTs increases the buckling load of the plate. Furthermore, considering agglomeration effects decreases the buckling load of system. In addition, it is found that the present results have good agreement with other works.

Parameter Study of Buckling Behavior for Isogrid Structure (등방성격자 구조의 좌굴거동에 대한 매개변수 분석)

  • Kang, Kyunghan;Kim, Yongha;Park, Jinho;Kim, Hyunduk;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.8-14
    • /
    • 2013
  • When launch vehicles are manufactured, one of the key points is a design of lightweight structure for reducing costs. Isogrid structure was designed to solve this topic, and many researches were carried out about buckling load because compression load is mainly applied to them. Recently, many studies are also being carried out about FEM model geometry of isogrid structure. The reason is that isogrid structure depends on size of ribs so it is difficult to modify about small changes in rib pattern. In this study, 1/8 model of cylindrical isogrid structure model was developed to analyze buckling behavior. Through parameter study, buckling analysis were performed to analyze buckling load and buckling mode depending on size of ribs.

Thermal Buckling Characteristics for Thermal Protection System Panel Using Ritz Method (리츠 법을 이용한 열방어 시스템 패널의 열 좌굴 특성 연구)

  • Lee, Heesoo;Kim, Yongha;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.18-28
    • /
    • 2019
  • High speed vehicles are subjected to high thermal loadings due to aerodynamic heating during ascent and reentry. Since a thermal protection system panel is mechanically constrained, it may cause thermal buckling under excessive thermal loadings. The thermal buckling could disturb the field of flow and make aerodynamic characteristics unstable. It is thus necessary to design the thermal protection system panel to prevent thermal buckling. This study defines the analytical model of temperature distribution using the finite difference method for the thermal protection system panel with large temperature differences inside and outside. This paper proposes the approximate model of the thermal buckling characteristics for the thermal protection system panel through the use of the Ritz method. The validity of the present method was verified by comparing the results of the finite element analysis. Furthermore, this research performs the parametric analysis of the thermal buckling characteristics for the thermal protection system panel by using the approximate model.

Predicting the buckling load of smart multilayer columns using soft computing tools

  • Shahbazi, Yaser;Delavari, Ehsan;Chenaghlou, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.81-98
    • /
    • 2014
  • This paper presents the elastic buckling of smart lightweight column structures integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite element modeling of Smart lightweight columns is found using $ANSYS^{(R)}$ software. Then, the first buckling load of the structure is calculated using eigenvalue buckling analysis. To determine the accuracy of the present finite element analysis, a compression study is carried out with literature. Later, parametric studies for length variations, width, and thickness of the elastic core and of the piezoelectric outer layers are performed and the associated buckling load data sets for artificial intelligence are gathered. Finally, the application of soft computing-based methods including artificial neural network (ANN), fuzzy inference system (FIS), and adaptive neuro fuzzy inference system (ANFIS) were carried out. A comparative study is then made between the mentioned soft computing methods and the performance of the models is evaluated using statistic measurements. The comparison of the results reveal that, the ANFIS model with Gaussian membership function provides high accuracy on the prediction of the buckling load in smart lightweight columns, providing better predictions compared to other methods. However, the results obtained from the ANN model using the feed-forward algorithm are also accurate and reliable.

Application of Buckling Restrained Braces in a 50-Storey Building

  • Sy, Jose A.;Anwar, Naveed;Aung, Thaung Htut;Rayamajhi, Deepak
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • The use of Buckling Restrained Braces (BRB) for enhancing the performance of the buildings is gaining wider acceptance. This paper presents the first application of these devices in a major high-rise building in the Philippines. A 50-storey residential reinforced concrete building tower, with ductile core wall, with BRB system is investigated. The detailed modeling and design procedure of buckling restrained brace system is presented for the optimal design against the two distinct levels of earthquake ground motions; serviceable behavior for frequent earthquakes and very low probability of collapse under extremely rare earthquakes. The stiffness and strength of the buckling restrained brace system are adjusted to optimize the performance of the structural system under different levels of earthquakes. Response spectrum analysis is conducted for Design Basis Earthquake level and Service level, while nonlinear time history analysis is performed for the most credible earthquake. The case study results show the effectiveness of buckling restrained braces.