• Title/Summary/Keyword: synthetic observations

Search Result 91, Processing Time 0.027 seconds

A Review on Monitoring the Everglades Wetlands in the Southern Florida Using Space-based Synthetic Aperture Radar (SAR) Observations

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.377-390
    • /
    • 2017
  • Space-based Synthetic Aperture Radar (SAR) observations have been widely and successfully applied to acquire invaluable temporal and spatial information on wetlands, which are unique environments and regarded as important ecosystems. One of the best studied wetland area is Everglades, which is located in southern Florida, USA. As a World Heritage Site, the Everglades is the largest natural and subtropical wilderness in the United States. The Everglades wetlands have been threatened by anthropogenic activities such as urban expansion and agricultural development, as well as by natural processes, as sea level changes due to climate change. In order to conserve this unique wetland environment, various restoration plans have been implemented. In this review paper, we summarize the main studies using space-based SAR observations for monitoring the Everglades. The paper is composed of the following two sections: (1) review of backscattered amplitude analysis and observations, and (2) review of interferometric SAR (InSAR) analysis and applications. This study also provides an overview of a wetland InSAR technique and space-based SAR sensors. The goal of this review paper is to provide a comprehensive summary of space-based SAR monitoring of wetlands, using the Everglades wetlands as a case study.

FINDING COSMIC SHOCKS: SYNTHETIC X-RAY ANALYSIS OF A COSMOLOGICAL SIMULATION

  • HALLMAN ERIC J.;RYU DONGSU;KANG HYESUNG;JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.593-596
    • /
    • 2004
  • We introduce a method of identifying evidence of shocks in the X-ray emitting gas in clusters of galaxies. Using information from synthetic observations of simulated clusters, we do a blind search of the synthetic image plane. The locations of likely shocks found using this method closely match those of shocks identified in the simulation hydrodynamic data. Though this method assumes nothing about the geometry of the shocks, the general distribution of shocks as a function of Mach number in the cluster hydrodynamic data can be extracted via this method. Characterization of the cluster shock distribution is critical to understanding production of cosmic rays in clusters and the use of shocks as dynamical tracers.

3D SIMULATIONS OF RADIO GALAXY EVOLUTION IN CLUSTER MEDIA

  • O'NEILL SEAN M.;SHEARER PAUL;TREGILLIS IAN L.;JONES THOMAS W.;RYU DONGSU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.605-609
    • /
    • 2004
  • We present a set of high-resolution 3D MHD simulations exploring the evolution of light, supersonic jets in cluster environments. We model sets of high- and low-Mach jets entering both uniform surroundings and King-type atmospheres and propagating distances more than 100 times the initial jet radius. Through complimentary analyses of synthetic observations and energy flow, we explore the detailed interactions between these jets and their environments. We find that jet cocoon morphology is strongly influenced by the structure of the ambient medium. Jets moving into uniform atmospheres have more pronounced backflow than their non-uniform counterparts, and this difference is clearly reflected by morphological differences in the synthetic observations. Additionally, synthetic observations illustrate differences in the appearances of terminal hotspots and the x-ray and radio correlations between the high- and low-Mach runs. Exploration of energy flow in these systems illustrates the general conversion of kinetic to thermal and magnetic energy in all of our simulations. Specifically, we examine conversion of energy type and the spatial transport of energy to the ambient medium. Determination of the evolution of the energy distribution in these objects will enhance our understanding of the role of AGN feedback in cluster environments.

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.

A Synthetic Exponentially Weighted Moving-average Chart for High-yield Processes

  • Kusukawa, Etsuko;Kotani, Takayuki;Ohta, Hiroshi
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.101-112
    • /
    • 2008
  • As charts to monitor the process fraction defectives, P, in the high-yield processes, Mishima et al. (2002) discussed a synthetic chart, the Synthetic CS chart, which integrates the CS (Confirmation Sample)$_{CCC(\text{Cumulative Count of Conforming})-r}$ chart and the CCC-r chart. The Synthetic CS chart is designed to monitor quality characteristics in real-time. Recently, Kotani et al. (2005) presented the EWMA (Exponentially Weighted Moving-Average)$_{CCC-r}$ chart, which considers combining the quality characteristics monitored in the past with one monitored in real-time. In this paper, we present an alternative chart that is more superior to the $EWMA_{CCC-r}$ chart. It is an integration of the $EWMA_{CCC-r}$ chart and the CCC-r chart. In using the proposed chart, the quality characteristic is initially judged as either the in-control state or the out-of-control state, using the lower and upper control limits of the $EWMA_{CCC-r}$ chart. If the process is not judged as the in-control state by the $EWMA_{CCC-r}$ chart, the process is successively judged, using the $EWMA_{CCC-r}$ chart. We compare the ANOS (Average Number of Observations to Signal) of the proposed chart with those of the $EWMA_{CCC-r}$ chart and the Synthetic CS chart. From the numerical experiments, with the small size of inspection items, the proposed chart is the most sensitive to detect especially the small shifts in P among other charts.

Mass estimation of halo CMEs using synthetic CMEs based on a full ice-cream cone model

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.43.3-43.3
    • /
    • 2019
  • A coronal mass ejection (CME) mass is generally estimated by the total brightness measured from white-light coronagraph observations. The total brightness are determined from the integration of the Thomson scattering by free electrons of solar corona along the line of sight. It is difficult to estimate the masses of halo CMEs due to the projection effect. To solve this issue, we construct a synthetic halo CME with a power-law density distribution (ρ = ρ0r-3) based on a full ice-cream cone model using SOHO/LASCO C3 observations. Then we compute a conversion factor from observed CME mass to CME mass for each CME. The final CME mass is determined as their average value of several CME masses above 10 solar radii. Our preliminary analysis for six CMEs show that their CME mass are well determined within the mean absolute relative error in the range of 4 to 15 %.

  • PDF

A Study on the Adjustment Synthetic Control Chart Pattern for Detecting Shifts using Individual Observations in Start-Up Process (초기공정에서 공정변화에 대한 개별 관측치를 이용한 수정된 합성 관리도 연구)

  • 지선수
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.53-58
    • /
    • 2002
  • This paper presents a adjustment synthetic control chart that is an integration of the Shewhart X chart and the conforming run length(CRL) chart. The application of the adjustment synthetic control chart my therefore substantially enhance the effectiveness process control for manufacturing. In the synthetic control chart, denotes the average number of the X sample required to detect a process shift. The synthetic control chart outperforms the EWM chart and the X chart when σ is greater than 0.75σ. And the X-CRL charts suggested above evaluate using the conditional probability.

  • PDF

CALCULATION OF TELLURIC ABSORPTION SPECTRA (지구 대기 흡수선 스펙트럼 계산)

  • Jeong, Gwanghui;Han, Inwoo;Lee, Byeong-Cheol
    • Publications of The Korean Astronomical Society
    • /
    • v.29 no.3
    • /
    • pp.35-44
    • /
    • 2014
  • In ground-based astronomical spectroscopic observations, there are many telluric absorption lines that are laid on the spectra of celestial objects. To study the physical properties of the celestial objects with these contaminated spectra, the telluric lines should be removed. A conventional method for removing the telluric lines is using the standard stellar spectrum as telluric line. In this paper, we introduce a technique to calculate synthetic telluric spectra and use them to remove telluric lines from a spectrum of a celestial object. We used Line-by-Line Radiative Transfer Model (LBLRTM) for calculating a synthetic spectrum and selected Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) model as atmospheric model. We apply our method to some spectra obtained by Bohyunsan Observatory Echelle Spectrograph (BOES) to show that the telluric lines are well removed from the observed spectra by our model within an accuracy of 2% which is close to the 1-sigma rms of the original spectra.

Relative merits of different types of multi-wavelength observations to constrain galaxy physical parameter

  • Pacifici, Camilla
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.35.2-35.2
    • /
    • 2013
  • I will present a new approach to constrain galaxy physical parameters from the combined interpretation of stellar and nebular emission in wide ranges of observations. This approach relies on a comprehensive library of synthetic spectra, assembled using state-of-the-art models of star formation and chemical enrichment histories, stellar population synthesis, nebular emission and attenuation by dust. We focus on the constraints set by 5-band photometry and low- and medium-resolution spectroscopy at optical rest wavelengths on a few physical parameters characterizing the stars and interstellar medium. Since these parameters cannot be known a priori for any galaxy sample, we assess the accuracy to which they can be retrieved by simulating 'pseudo-observations' using models with known parameters. We find that the combined analysis of stellar and nebular emission in low-resolution (50A FWHM) galaxy spectra provides valuable constraints on all physical parameters. The approach can be extended to the analysis of any type of observation and during this talk i will present some applications to observed galaxies up to redshift 1.5.

  • PDF

Halo CME mass estimated by synthetic CMEs based on a full ice-cream cone model

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2021
  • In this study, we suggest a new method to estimate the mass of a halo coronal mass ejection (CME) using synthetic CMEs. For this, we generate synthetic CMEs based on two assumptions: (1) the CME structure is a full ice-cream cone, (2) the CME electron density follows a power-law distribution (ρcme0r-n). The power-law exponent n is obtained by minimizing the root mean square error between the electron number density distributions of an observed CME and the corresponding synthetic CME at a position angle of the CME leading edge. By applying this methodology to 57 halo CMEs, we estimate two kinds of synthetic CME mass. One is a synthetic CME mass which considers only the observed CME region (Mcme1), the other is a synthetic CME mass which includes both the observed CME region and the occulted area larger than 4 solar radii (Mcme2). From these two cases, we derive conversion factors which are the ratio of a synthetic CME mass to an observed CME mass. The conversion factor for Mcme1 ranges from 1.4 to 3.0 and its average is 2.0. For Mcme2, the factor ranges from 1.8 to 5.0 with the average of 3.0. These results imply that the observed halo CME mass can be underestimated by about 2 times when we consider the observed CME region, and about 3 times when we consider the region including the occulted area. Interestingly these conversion factors have a very strong negative correlation with angular widths of halo CMEs.We also compare the results with the CME mass estimated from STEREO observations.

  • PDF